两类生物种群反应扩散模型的动力学研究
[Abstract]:Diffusion, space environment has a significant impact on the total number of species, and even related to the survival of species. The first model of this paper introduces the classical Lotka-Volterra competitive diffusion system. The comprehensive effects of diffusion, space environment and competitiveness on the described model are studied. In fact, the competitiveness of species also changes in different environments, so we incorporate spatial correlation into competitiveness. That is, the constant competitiveness in the previous model is extended to extraordinary competitiveness. We get that when at least one of the living environments of the two species is homogeneous under the condition of weak competition, as long as the lower bound of the competitiveness of one species is greater than a certain critical value, the species can always completely defeat the other species. When the spatial environment of the two species is heterogeneous, if one of the species wins its competitors completely, it is necessary not only that the lower bound of the competitiveness of the species is greater than a certain critical value, but also that the competitiveness of its competitors is less than a certain critical value. The flow of people has an important impact on the extinction and spread of infectious diseases. In addition, timely treatment helps to prevent the spread of infectious diseases, but the treatment of an infectious disease is always limited in each region. Therefore, we consider the comprehensive effects of diffusion and saturation therapy on the spread of infectious diseases. Based on this, the second model introduced in this paper is a kind of SIS reaction diffusion equation with saturation treatment term in heterogeneous space. Through the analysis, we obtain the existence and uniqueness of the disease-free equilibrium solution, and then we are worth reaching the threshold of infectious disease epidemic through the main characteristics, which is called the basic regeneration number, which is used to discuss the stability of the equilibrium solution. When the basic regeneration number is less than 1, the disease-free equilibrium solution is locally stable. When the basic regeneration number is greater than 1, the disease-free equilibrium solution is unstable and there is a local equilibrium solution.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 刘超,江成顺,沈永明;一类反应扩散模型的未知参数辨识[J];信息工程大学学报;2004年02期
2 王治国;李艳玲;;一类自催化反应扩散模型共存解的分析[J];陕西师范大学学报(自然科学版);2011年01期
3 江成顺,,顾红芳;一类反应扩散模型的参数识别[J];河南科学;1994年04期
4 唐延林;一类反应扩散模型的涨落耗散行为[J];怀化师专学报;1993年06期
5 张为付,吕荣庆;两种生物相互作用的反应扩散模型及解的讨论[J];应用数学;1995年03期
6 苗亮英;张睿;刘志琳;卢雪丽;;一类激活剂-抑制剂反应扩散模型的定性分析[J];兰州交通大学学报;2013年04期
7 黄业辉;翁佩萱;;具有非单调出生函数的周期反应扩散模型的渐近传播速度(英文)[J];数学季刊;2012年03期
8 杨立娟;房辉;;一个具有年龄结构的单种群离散反应扩散模型的波前解[J];生物数学学报;2007年02期
9 王治国;吴建华;;一类自催化反应扩散模型正解的唯一性与稳定性(英文)[J];生物数学学报;2011年02期
10 石兰芳;欧阳成;陈丽华;莫嘉琪;;一类大气等离子体反应扩散模型的解法[J];物理学报;2012年05期
相关博士学位论文 前2条
1 董亚莹;三类反应扩散方程的正解[D];西北大学;2016年
2 李善兵;两类反应扩散模型的动力学行为[D];陕西师范大学;2016年
相关硕士学位论文 前10条
1 王高雅;两类生物种群反应扩散模型的动力学研究[D];上海师范大学;2017年
2 索文爽;两类反应扩散模型解的定性分析[D];陕西师范大学;2015年
3 宋彦锋;一类合作反应扩散模型解的定性研究[D];哈尔滨工业大学;2016年
4 田慧洁;两类反应扩散模型的定性分析[D];陕西师范大学;2016年
5 王晓妮;一类三种群反应扩散模型的定性分析及最优控制[D];陕西科技大学;2017年
6 马翠;两类反应扩散模型的定性分析及数值模拟[D];陕西师范大学;2010年
7 樊宝隽;两类反应扩散模型的分歧及稳定性研究[D];陕西师范大学;2012年
8 任龙;化学反应扩散模型的奇异摄动问题[D];吉林大学;2014年
9 赵恒志;食饵具有疾病和HollingⅢ功能反应捕食者—食饵反应扩散模型的定性分析[D];东北师范大学;2011年
10 张丽敬;两类反应扩散模型的解的性质[D];陕西师范大学;2011年
本文编号:2477512
本文链接:https://www.wllwen.com/kejilunwen/yysx/2477512.html