基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近
发布时间:2019-05-20 15:07
【摘要】:给出了最大框架下基于第四类Chebyshev结点组的Lagrange插值多项式在最大范数下逼近一类解析函数时的精确误差。又针对Lp(p1)范数,给出了插值函数对该类解析函数类的逼近误差的强渐近阶。
[Abstract]:In this paper, the exact error of Lagrange interpolation Polynomials based on the fourth kind of Chebyshev node group under the maximum norm is given when approximating a class of analytic functions under the maximum norm. Aiming at the Lp (p1) norm, the strong asymptotic order of the approximate error of the interpolation function to this kind of analytic function class is given.
【作者单位】: 天津师范大学数学科学学院;
【基金】:国家自然科学基金青年科学基金项目(11401436)
【分类号】:O174.41
[Abstract]:In this paper, the exact error of Lagrange interpolation Polynomials based on the fourth kind of Chebyshev node group under the maximum norm is given when approximating a class of analytic functions under the maximum norm. Aiming at the Lp (p1) norm, the strong asymptotic order of the approximate error of the interpolation function to this kind of analytic function class is given.
【作者单位】: 天津师范大学数学科学学院;
【基金】:国家自然科学基金青年科学基金项目(11401436)
【分类号】:O174.41
【相似文献】
相关期刊论文 前10条
1 王全龙;对《弱Chebyshev集与样条》一文的订正和推广[J];山西大学学报(自然科学版);1981年02期
2 周家斌;ON THE EXPANSION OF CHEBYSHEV POLYNOMIALS IN IRREGULAR GRIDS[J];A Monthly Journal of Science;1982年05期
3 孙燮华;THE EXACTLY POINTWISE DEGREE OF APPROXIMATION OF HERMITE-FEJ,
本文编号:2481733
本文链接:https://www.wllwen.com/kejilunwen/yysx/2481733.html