一类半线性周期问题单侧全局区间分歧和定号解
发布时间:2019-06-12 05:45
【摘要】:首先建立一类含不可微非线性项周期问题的单侧全局区间分歧定理.应用上述定理,可以证明一类半线性周期问题主半特征值的存在性.进而,可研究下列半线性周期问题定号解的存在性-x″+q(t)x=αx~++βx~-+ra(t)f(x),0tT,x(0)=x(T),x'(0)=x'(T),其中r≠0是一个参数,q,a∈C([0,T],(0,∞)),α,β∈C[0,T],x~+=max{x,0},x~-=-min{x,0};f∈C(R,R),当s≠0时,sf(s)0成立,并且f0∈[0,∞)且f_∞∈(0,∞)或f_0∈[0,∞]且f_∞=0,其中f0=lim"#s"#→0f(s)/s,f_∞=lim"#s"#→+∞f(s)/s.
[Abstract]:Firstly, a class of unilateral global interval bifurcation theorem for periodic problems with nondifferentiable nonlinear terms is established. By using the above theorem, the existence of principal semi-eigenvalues for a class of semilinear periodic problems can be proved. Furthermore, we can study the existence of signed solutions for the following semilinear periodic problems-x "q (t) x = 伪 x 尾 x 鈮,
本文编号:2497790
[Abstract]:Firstly, a class of unilateral global interval bifurcation theorem for periodic problems with nondifferentiable nonlinear terms is established. By using the above theorem, the existence of principal semi-eigenvalues for a class of semilinear periodic problems can be proved. Furthermore, we can study the existence of signed solutions for the following semilinear periodic problems-x "q (t) x = 伪 x 尾 x 鈮,
本文编号:2497790
本文链接:https://www.wllwen.com/kejilunwen/yysx/2497790.html