Duffing映射的全局动力学行为分析与研究
发布时间:2019-06-21 17:50
【摘要】:针对二维离散Duffing映射,分别以a和b为分岔参数,借助多重分岔图、吸引子共存分析和吸引域分析等手段,对该映射系统的全局动力学行为进行了深入研究。研究结果表明,离散Duffing系统仅在一定参数范围内收敛;且随着参数的变化,虽然系统收敛区域的范围和收敛域中的动力学行为各不相同,但其变化均具有一定的规律性。最后,借助吸引子、吸引域及边界的分析,明确了共存吸引子间的关系及其变化规律,进一步探讨了系统不同动力学行为间的转迁机制。
[Abstract]:For two-dimensional discrete Duffing mapping, the global dynamic behavior of the mapping system is studied by means of multiple bifurcation graph, attractor coexistence analysis and attraction domain analysis with a and b as bifurcation parameters, respectively. The results show that the discrete Duffing system converges only in a certain range of parameters, and with the change of parameters, although the range of convergence region and the dynamic behavior in the convergence region are different, the changes have certain regularity. Finally, with the help of the analysis of the attraction domain and the boundary, the relationship between the coexisting attracts and their changing laws are clarified, and the transfer mechanism among the different dynamic behaviors of the system is further discussed.
【作者单位】: 西北工业大学理学院;
【基金】:国家自然科学基金(11672232、11302171) 陕西省自然科学基础研究计划(2016JQ1015)资助
【分类号】:O193
本文编号:2504257
[Abstract]:For two-dimensional discrete Duffing mapping, the global dynamic behavior of the mapping system is studied by means of multiple bifurcation graph, attractor coexistence analysis and attraction domain analysis with a and b as bifurcation parameters, respectively. The results show that the discrete Duffing system converges only in a certain range of parameters, and with the change of parameters, although the range of convergence region and the dynamic behavior in the convergence region are different, the changes have certain regularity. Finally, with the help of the analysis of the attraction domain and the boundary, the relationship between the coexisting attracts and their changing laws are clarified, and the transfer mechanism among the different dynamic behaviors of the system is further discussed.
【作者单位】: 西北工业大学理学院;
【基金】:国家自然科学基金(11672232、11302171) 陕西省自然科学基础研究计划(2016JQ1015)资助
【分类号】:O193
【相似文献】
相关期刊论文 前10条
1 毕卫萍;具有时滞的高阶Duffing型方程的周期解[J];河南师范大学学报(自然科学版);1996年01期
2 尚梅;鲁世平;;一类时滞Duffing型方程周期解[J];安徽师范大学学报(自然科学版);2007年04期
3 黄先开,陈文灯;时滞Duffing型方程鈕+c鈖+g(x(t-τ))=p(t)的2π周期解[J];自然科学进展;1998年01期
4 李永昆;时滞Duffing型系统的2π周期解[J];纯粹数学与应用数学;1998年02期
5 陈月红;;一类高阶非自治的时滞Duffing型方程周期解[J];海南大学学报(自然科学版);2009年03期
6 赵加伟;翟延慧;;一类时滞Duffing型方程周期解的存在性[J];长春师范学院学报(自然科学版);2008年08期
7 刘健;;n-维Duffing型系统的T-周期解[J];河南理工大学学报(自然科学版);2010年05期
8 黄先开,向子贵;具有时滞的Duffing型方程鈕+g(x(t—τ))=p(t)的2π周期解[J];科学通报;1994年03期
9 尚梅;鲁世平;;一类时滞Duffing型方程周期解[J];阜阳师范学院学报(自然科学版);2006年03期
10 李建利,申建华;具脉冲时滞的Duffing型方程的周期解[J];应用数学学报;2005年01期
,本文编号:2504257
本文链接:https://www.wllwen.com/kejilunwen/yysx/2504257.html