加权有向随机图模型中的渐近理论研究
文内图片:
图片说明图1:邋Karate数据集网络图逡逑
[Abstract]:In recent years, the research on the statistical properties of directed graph models has become a hot topic. In particular, as the number of vertices in the digraph tends to infinity, the study of the asymptotic behavior of the maximum likelihood estimation based on the vertex degree sequence parameters is a new challenge. Yanetal. (2016a) The asymptotic properties of the maximum likelihood estimation of the parameters in the case of infinite discrete and continuous cases are studied. However, for the weight of the other side, the finite discrete case is not involved, and we further study the situation to obtain similar results. In this paper, we aim to set up the consistent consistency and asymptotic normality of the maximum likelihood estimation of the parameters when the number of parameters tends to be infinite. With the fact that the number of vertices in the random graph tends to be infinite and the double-degree sequence is the full sufficient statistic of the exponential family distribution with the finite discrete weighting, we study the consistency and the asymptotic normality of the maximum likelihood estimation of the parameters. The theoretical results are demonstrated by numerical simulation and two practical numerical examples. The main results of this paper are given in the form of the following two theorems: Theorem 1 (Consistency) assumes that it is a constant of 0-1/24, A-P-*, Where P * * represents the probability distribution of the directed graph Gn under the parameter F *[see (1.1)]. Then when n tends to infinity, the probability is 1, the maximum likelihood estimate is present and satisfies the | | 1-1 * | | xt = Op ((logn)1/ 2e6 | | xt * | | 1/ n1/2) = Op (1). Further, if the maximum likelihood estimation is present, the presence of the maximum likelihood estimation is unique. Theorem 2 (Asymptotic Normality) assumes A-P-*. If | | 1 | | showcases (logn,1/36) is a constant, then any fixed kk = 1, with n = 0, the first k elements of the vector 1-1 * are asymptotically subordinate to the multivariate normal distribution, where the mean value of the parameter is 0, The covariance matrix consists of sub-matrices of the upper left-hand corner k-k of the S *, where the matrix S * is obtained by replacing the matrix S in the matrix S with the true value A *, and the definition of S is shown in (4.6). in-file picture: picture description fig.1: fig.1: kakrate data set network diagram
【学位授予单位】:华中师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O212
【相似文献】
相关期刊论文 前10条
1 潘保国;;一类非对称的GARCH模型的参数估计[J];吉林师范大学学报(自然科学版);2009年04期
2 张如梦;;小噪声扰动的二维扩散的极大似然估计[J];贵州师范学院学报;2016年03期
3 罗泰晔;马翠嫦;;基于指数随机图模型的协同创新网络形成机理研究[J];情报理论与实践;年期
4 田方;;一类稀疏随机图的距离匹配数(英文)[J];数学进展;2018年02期
5 温亮;王莉雯;;基于C#的随机图像验证码的绘制[J];城市地理;2016年24期
6 周伟萍;张德然;杨兴琼;;具有部分缺失数据时两个几何总体的估计[J];长春大学学报;2008年02期
7 韩七星;孙伟志;;随机食物有限种群模型参数估计的相合性及其渐近分布[J];吉林大学学报(理学版);2012年03期
8 田甜;杨艳丽;郭浩;陈俊杰;;基于层次随机图模型的脑网络链路预测[J];计算机应用研究;2016年04期
9 王越乙;徐枞巍;;指数随机图(p*)模型不同描述的对比研究[J];清华大学学报(自然科学版);2015年04期
10 卢海威;赵胜利;;有先验信息的多参数分布族的参数估计[J];曲阜师范大学学报(自然科学版);2008年03期
相关会议论文 前10条
1 郭雷;;连续系统的近似极大似然估计:存在性与收敛性[A];1991年控制理论及其应用年会论文集(下)[C];1991年
2 宋立新;鲁大伟;付增梁;;TARCH(q)模型参数的极大似然估计[A];中国现场统计研究会第十三届学术年会论文集[C];2007年
3 韦进;刘子维;郝洪涛;申重阳;李辉;;超导重力观测噪声水平的极大似然估计[A];中国地球物理2010——中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集[C];2010年
4 李永红;;可加模型回归函数估计的强相合性[A];数学·物理·力学·高新技术研究进展——1998(7)卷——中国数学力学物理学高新技术交叉研究会第7届学术研讨会论文集[C];1998年
5 孙燕;柴根象;;纵向数据混合效应模型参数估计的强相合性[A];2003中国现场统计研究会第十一届学术年会论文集(下)[C];2003年
6 万超岗;赵杰煜;张媛媛;;基于随机图的情感产生模型[A];第十四届全国图象图形学学术会议论文集[C];2008年
7 李刚;童,
本文编号:2509867
本文链接:https://www.wllwen.com/kejilunwen/yysx/2509867.html