几类生物动力系统的稳定性和分支问题研究
文内图片:
图片说明:图3*2:巧(T)曲线图(如图(a)),,邋r邋=邋0.1邋<邋r0时系统波图(如图W).邋T邋=邋2.5邋>户时逡逑
[Abstract]:As a cross-discipline, biomathematics has developed rapidly in recent years. Biodynamics is a branch of biological mathematics, and the mathematical model plays a very important role in describing the behavior of biological dynamics. The time-delay biodynamic system is a field with rich practical background and wide application. The stability and branch problems of the time-delay power system play a key role in the development of the practical application field, in which the stability shows the structural balance, and the stability of the system is studied in the infinite dimensional space. In particular, the study of global stability is more comprehensive and in-depth show the dynamic nature of the system. The so-called branch refers to the phenomenon that some characteristics of the system change when the parameter changes and passes some critical values. The Hopf bifurcation is a common and important branch, and it mainly studies the phenomenon that the stability of the equilibrium point changes when the parameters change, so as to generate a small-amplitude periodic solution near the equilibrium point. In this paper, we mainly apply the Lyapunov stability theory, the LaSalle invariance principle, the topological degree theory, the central manifold theorem, the standard method and the global branch theorem. The persistence of the local and global Hopf branches and systems is studied. The specific content is as follows: First, we discuss a kind of SIRS model, choose time-delay as the parameter, get the global asymptotic stability of the disease-free equilibrium point, the local asymptotic stability of the local disease equilibrium point and the existence of the Hopf branch, and the persistence of the system. After that, a class of non-self-governing SIR model is studied, and the sufficient conditions for global existence, uniqueness and global stability of the system's positive periodic solution are obtained by using the coincidence degree theory. Taking into account the influence of the latent period of the disease, a kind of SEIRS model is also studied to obtain the global asymptotic stability of the disease-free equilibrium point, the local asymptotic stability of the local disease equilibrium point and the existence of the global Hopf branch, and the sufficient condition of the system is also obtained. Secondly, the complex dynamics of a kind of floating ecosystem were studied. At first, the stability analysis of the equilibrium point of the system of ordinary differential equation is given, and the time-delay is introduced in the system of ordinary differential equation, and the sufficient conditions for global asymptotic stability and instability of the boundary equilibrium point are obtained. The stability switching phenomenon occurs at the positive equilibrium point, and the periodic solution may occur, and the existence of the global Hopft branch is confirmed with the increase of the time delay. It is also found that with the increase of the release rate of the toxin, the interval between the positive equilibrium point and the positive equilibrium point is reduced, indicating that the toxin can contribute to the stability of the system. In the end, diffusion is introduced on the basis of time-delay system, the common influence of diffusion and time-delay is investigated, and the stability of the equilibrium point can not be changed by diffusion, that is, the Turing instability does not occur. The influence of the large diffusion and the small diffusion on the Hopf bifurcation is investigated, and the non-homogeneous periodic solution of the space can be generated under certain conditions, and then the algorithm is given to determine the nature of the solution of the branch period. At last, the hybrid control strategy of two kinds of systems is studied. In this paper, a floating ecosystem with two time-delay is first studied, and a stable switching phenomenon may occur in the system with two time-delay parameters. When the parameters change, it is found that the mixing phenomenon may occur, and further, it is found that the increase of time-delay and the release rate of the toxin can cause the mixing phenomenon of the system to disappear. The increase in the maximum conversion of zooplankton will cause the system to diverge from a steady state through a period of time, resulting in a mixing. Secondly, the time-delay feedback control of a kind of floating ecosystem with hybrid system is studied, with the time-delay as the parameter, the condition of the Hopf bifurcation of the control system is obtained, that is, the system under certain conditions, The unstable periodic solution of the system can be transformed into a stable periodic solution or a stable equilibrium point when certain parameters are delayed at that time, and the effectiveness of the control is explained.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 李俊;;双线性发生率的艾滋病模型的研究[J];重庆工商大学学报(自然科学版);2014年02期
2 戴启学;柳合龙;张萍;;一类带有生理年龄和传染年龄的传染病模型(英文)[J];信阳师范学院学报(自然科学版);2006年04期
3 苏双双;王凯;夏米希努尔;;HIV病理动力学模型分析[J];北华大学学报(自然科学版);2011年06期
4 李建全;马知恩;;两类带有确定潜伏期的SEIS传染病模型的分析[J];系统科学与数学;2006年02期
5 王娟;杨金根;李文生;;具有治疗的急慢性传染病模型的稳定性与分支[J];信阳师范学院学报(自然科学版);2008年04期
6 叶海平;丁永生;;一类总人口在变化的HIV/AIDS传播的动力学模型[J];生物数学学报;2010年01期
7 苟清明;王稳地;;一类有迁移的传染病模型的稳定性[J];西南师范大学学报(自然科学版);2006年01期
8 王定江;张莹莹;;时滞森林病虫害模型的稳定性分析(英)[J];生物数学学报;2013年02期
9 白京;李桂花;;基于禽流感的一类模型建立与性态研究[J];数学的实践与认识;2013年18期
10 于佳佳;;随机多群体时滞SIR模型的地方病平衡点的稳定性[J];黑龙江大学自然科学学报;2013年06期
相关博士学位论文 前4条
1 江志超;几类生物动力系统的稳定性和分支问题研究[D];北京科技大学;2016年
2 郭树敏;传染性疾病传播机制与控制的系统研究[D];北京信息控制研究所;2010年
3 杨瑜;几类生物数学模型的动力学研究[D];上海交通大学;2009年
4 侯强;动力系统在几个具体传播问题中的应用研究[D];中北大学;2013年
相关硕士学位论文 前10条
1 杜葵;两类肺结核动力学模型的性质分析[D];华中师范大学;2015年
2 白梅;两类动力系统的稳定性与分岔分析[D];郑州大学;2015年
3 宋桃;具有应急群体免疫的天花传播动力学模型研究[D];华北电力大学;2015年
4 李霞;具有非线性发生率和时滞的传染病动力学模分析[D];兰州交通大学;2015年
5 袁晓霞;几类乙肝传染病模型的动力学性态分析[D];中北大学;2016年
6 张冬爽;具有时滞和隔离项的SIQS模型的稳定性研究[D];武汉理工大学;2008年
7 张超;具有时滞和脉冲效应的传染病模型研究[D];信阳师范学院;2010年
8 张秋娟;虫媒传染病模型的稳定性分析[D];大连交通大学;2012年
9 明艳;媒体报道对突发性传染病传播影响的建模与研究[D];信阳师范学院;2013年
10 苟清明;一类有迁移的流行病模型[D];西南大学;2006年
本文编号:2509931
本文链接:https://www.wllwen.com/kejilunwen/yysx/2509931.html