一些给定阶数的七度对称图
[Abstract]:If the automorphism group of a graph acts on its arc set, it is called symmetric. In this paper, the application of group theory in graph theory is studied. the object of group theory is graph with some symmetry. the main method is to study the symmetry of graph by automorphism group of graph. The main work of this paper is to classify and count several kinds of seven-degree symmetric graphs with a given order. In the first chapter, the research background and significance of symmetric graph are given, and then the concepts and Lemma related to symmetric graph are briefly introduced. In chapter 2, we give a classification of 7-degree symmetric graphs with twice the square order of prime numbers. It is proved that only one symmetric graph of order 8 is a complete graph K8. if the order is greater than 8, there are four coset graphs of PSU (3, 5) and a standard double covering of a special commutative Cayley directed graph of square order of prime number. In chapter 3, we give all the 7-degree connected symmetric graphs of order 2pq, where p, Q is a different prime number. When Q = 2, there is only one connected symmetric graph of order 4p, which is K8. for odd prime numbers p and Q, the 7-degree connected 1-regular graph with solvable automorphism group is an infinite class, and there are four scattered graphs with unsolvable automorphism group, which are 1, 2, 3-arc transitive respectively. In particular, one of the four scattered graphs is primitive and the other two are biprimitive. In chapter 4, we give all the 7-degree connected symmetric graphs of order 4pq, where p, Q is a different prime number. When Q = 2, there are and only two 7-degree connected symmetric graphs of order 8p. For odd prime numbers p and Q, there are eight scattered 1-transitive 7-degree connected graphs with unsolvable automorphism groups. In particular, two of these eight scattered graphs are standard double covers of 7-degree symmetric graphs of order 78.
【学位授予单位】:河南师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O157.5
【相似文献】
相关期刊论文 前10条
1 刘波;;绘制对称图的又一方法[J];生物学通报;1955年12期
2 路在平,王长群,徐明曜;6p~2阶的三度半对称图[J];中国科学(A辑:数学);2003年03期
3 王福荣;;素数阶对称图的齐分解[J];首都师范大学学报(自然科学版);2006年01期
4 成会文;;关于4p阶3度对称图的一点注记[J];科学技术与工程;2009年10期
5 化小会;冯衍全;;8p阶5度对称图[J];北京交通大学学报;2011年03期
6 郭松涛;冯衍全;;3p~2阶4度对称图[J];北京交通大学学报;2011年06期
7 王丽;;一类半对称图的构造[J];数学的实践与认识;2012年01期
8 王汝楫;6p阶可解对称图的分类[J];数学研究与评论;1995年04期
9 杜少飞;两类半对称图的构造[J];科学通报;1998年03期
10 陈进之;关于3P阶对称图的问题[J];数学理论与应用;1999年02期
相关博士学位论文 前4条
1 李艳涛;几类对称图的分类与计数[D];北京交通大学;2010年
2 韩华;容许本原群的半对称图[D];南开大学;2014年
3 化小会;几类边传递图[D];北京交通大学;2011年
4 王福荣;pq阶不可定向正则地图与第二小阶双本原半对称图的分类[D];首都师范大学;2006年
相关硕士学位论文 前10条
1 陈利;一些给定阶数的七度对称图[D];河南师范大学;2017年
2 刘玉芹;具有非交换单群传递作用的七度对称图[D];北京交通大学;2017年
3 蒋宁;关于4p~n阶3度对称图[D];北京交通大学;2010年
4 韩华;6p~2阶的素数度半对称图[D];南开大学;2011年
5 邵文武;阶为12,,20的对称图的分类[D];首都师范大学;2000年
6 白伟;4pq阶的3度连通半对称图[D];郑州大学;2004年
7 黄兆红;四倍素数幂阶的五度对称图[D];云南大学;2013年
8 吴辞旋;阶为2倍素数幂的五度对称图[D];云南大学;2013年
9 吴小芳;关于对称图的一些注记[D];广东工业大学;2007年
10 秦丹;6pq阶5度对称图[D];云南大学;2013年
本文编号:2510274
本文链接:https://www.wllwen.com/kejilunwen/yysx/2510274.html