三角代数上σ-可导映射的可加性
发布时间:2019-07-24 14:05
【摘要】:设U是一个三角代数,δ是U上的一个映射(无可加性假设),σ是U上的一个自同构.利用代数分解方法,证明了如果对任意的x,y∈U,有δ(xy)=δ(x)y+σ(x)δ(y),则δ是一个可加的σ-导子.
[Abstract]:Let U be a trigonometric algebra, 未 be a mapping on U (inadditivity hypothesis), and 蟽 be an automorphism on U. By using the algebra decomposition method, it is proved that if there is 未 (xy) = 未 (x) y 蟽 (x) 未 (y), for any x, y 鈭,
本文编号:2518681
[Abstract]:Let U be a trigonometric algebra, 未 be a mapping on U (inadditivity hypothesis), and 蟽 be an automorphism on U. By using the algebra decomposition method, it is proved that if there is 未 (xy) = 未 (x) y 蟽 (x) 未 (y), for any x, y 鈭,
本文编号:2518681
本文链接:https://www.wllwen.com/kejilunwen/yysx/2518681.html