可积系统的Lie对称分析与双线性方法研究
发布时间:2020-06-02 00:47
【摘要】:本文采用Lie对称方法和双线性方法研究几类具有物理背景的非线性可积系统的性质。基于Lie对称分析理论对三类非线性可积系统进行系统的分析,具体的研究内容如下:研究统计物理模型Heisenberg方程,导出Heisenberg方程的Lie点对称,推广了直接利用换位子表构造一维子代数最优系统的方法。根据子代数最优系统,分析Heisenberg方程的相似约化与群不变解。利用乘子方法导出3组局部的守恒律。Heisenberg方程是非线性自伴随的,借助Ibragimov守恒律方法构造出对应点对称的守恒律。分析著名的AKNS族中的方程AKNS系统,系统地导出Lie点对称、子代数最优系统、相似约化、群不变解等结果。借助直接方法导出4组局部的守恒律,证明AKNS系统是拟自伴随的,且依据新守恒定理构造出2组非平凡的守恒律。利用Lie对称方法研究不同色散波相互作用的物理模型(2+1)-维Boiti-Leon-Pempinelli(BLP)系统,导出BLP系统的Lie点对称与单参数变换群,进一步研究更复杂的一维子代数最优系统。截断Painleve分析被用来导出B LP系统的B acklund变换,提出利用截断Painleve分析导出的B acklund变换构造可积系统的团块型解的方法,并导出BLP系统的团块型解,利用图像分析了团块型解的动力学行为,借助Backlund变换构造出融合型N-孤立波解,并且证明BLP系统的CRE可解性。基于双线性方法研究两类可积系统的Riemann theta函数拟周期波解与团块解,具体结果如下:将Riemann-Backlund方法推广到变系数的可积系统,研究广义变系数(2+1)-维KdV方程的孤子解与拟周期波解。借助极限分析方法建立了拟周期波解与孤子解之间的联系,事实证明拟周期波解在小振幅极限条件下趋近于孤子解。此外,通过图像分析总结出孤子解与拟周期波解的传播特征。借助双线性方法构造不可压缩流体模型(2+1)-维不对称Nizhnik-Novikov-Veselov方程的团块孤子解、团块条纹混合解与周期团块解。经过分析可知团块孤子与条纹孤子之间的碰撞是非弹性的,随着时间的推移条纹孤子吞没了团块孤子,而周期团块波可以视为单个团块孤子的叠加。
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:O175
本文编号:2692332
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:O175
【参考文献】
相关期刊论文 前1条
1 李翊神,朱国城;一个谱可变演化方程的对称[J];科学通报;1986年19期
,本文编号:2692332
本文链接:https://www.wllwen.com/kejilunwen/yysx/2692332.html