当前位置:主页 > 科技论文 > 数学论文 >

高斯过程回归在不确定性量化中的应用

发布时间:2020-07-09 17:26
【摘要】:真实世界实验系统或计算机仿真模型中普遍存在一定的不确定性。引起这些不确定性的原因有很多,例如:模型缺陷或偏差,数值误差,实验观测误差和计算机模型仿真或实验测量中有效数据缺失的插值产生的误差等等。因此在实际应用问题中经常需要基于仿真或预测结果做出一些重要的决定或决策。如果能够将不确定性量化,这些基于预测或者仿真结果的决策或控制策略的可信程度都将会大大改善。传统的不确定性量化方法需要大量访问实验系统或计算机模型获取数据。当系统或仿真模型非常昂贵时(即每次访问时间消耗较大),传统的不确定性量化方法所需的时间成本变得无法承受。对实验系统或计算机仿真模型构建一个高效的替代模型是一种简单直接的解决方法,同时采用高效的替代模型的方法可使传统经典的不确定性量化方法继续延用。高斯过程回归模型具有高效、灵活、可量化预测值不确定性信息等优点。这些优点使高斯过程回归模型成为众多替代模型中一个较好的选择。本文旨在通过使用高斯过程作为昂贵系统或模型的替代模型,探索高斯过程回归模型在各种不确定性量化问题中的应用。具体而言本论文将研究如何利用高斯过程解决失效概率估计、后验密度估计和实验设计三个问题。下面我们将简要陈述我们在这三个问题上的研究工作。现实工程系统中不确定性或随机性的存在可能会导致系统出现异常,甚至失效的情况。因此在工程领域中,系统的失效概率估计或高精度异常检测是一个非常重要的课题。但在实际操作中,失效概率的估计需要对系统模型进行大量仿真。本文针对昂贵系统的失效概率估计问题提出采用实验设计的方法构建高精度的失效边界替代模型。这种方法摒弃对整个参数空间构建精确模型,仅在失效边界的参数空间附近建立精确模型,减少了所需的实验数据量和访问真实昂贵系统的次数(因为失效边界的参数空间只是整个参数空间的一部分)。数值实现中提出利用正态分布优越的解析性质将常规实验设计框架中所需的双层积分减少为单层积分,有效地提高算法的计算速度的同时得到了高精度的失效边界模型。该实验设计框架允许同时设计多个实验点,有利于工程实现中并行系统的使用。我们研究的第二个问题是后验密度估计问题。贝叶斯推断是一种将数学模型与数据信息相结合,推断模型参数的方法。本文考虑在昂贵似然函数条件下,通过贝叶斯推断的方法估计已知实验数据的参数后验分布。我们提出利用指数高斯过程回归模型和建议分布的积的形式近似似然函数和参数先验分布的积。该方法有利于降低构造似然函数替代模型的难度。我们提出通过将前一轮后验分布作为本轮建议分布的策略构建主动实验设计算法,逐步提高高斯过程回归模型替代模型的精度。最后通过数值实验验证高斯过程回归模型在参数后验密度估计问题中的有效性。我们研究的第三个问题是实验设计问题。在包含实验参数和设计参数的实验系统中,人们往往对设计参数并不感兴趣。但不同的设计参数会改变实验的输出数据,影响统计建模的精度。本文考虑在以统计推断为目标的实验设计中,对设计参数进行最优设计。我们提出利用多任务高斯过程回归模型模型近似昂贵实验系统的逆过程,通过最大化期望效应寻找设计参数的最优设计值。提出分别采用最优设计准则和最优设计准则作为效应函数,量化设计参数取不同值时模型不确定性的大小。我们通过降低数据中的不确定性,更加准确地估计实验参数后验分布。通过数值实验比较在设计参数取不同值时实验参数的后验边际分布验证最优设计的有效性。
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2018
【分类号】:O212;O224

【相似文献】

相关期刊论文 前10条

1 董军超;陈津虎;胡彦平;杨学印;;基于逆高斯过程的加速退化试验失效机理一致性判定[J];强度与环境;2019年05期

2 钟美;赵兵涛;黄朔;;基于高斯过程回归的燃煤烟气汞排放预测[J];动力工程学报;2016年12期

3 李慧琼;;d维平稳高斯过程极集的充分条件及维数[J];数学杂志;2007年05期

4 胡爱平;伍度志;;平稳高斯过程最大值的极限分布[J];西南师范大学学报(自然科学版);2006年06期

5 谢盛荣;一类高斯过程在高水平u上的逗留[J];科学通报;1998年13期

6 陈振龙,徐赐文;d维平稳高斯过程相交局部时的几个性质[J];武汉工业大学学报;1999年06期

7 侯炳旭;俞冀阳;徐沾杰;江光明;邹志强;;利用高斯过程回归对燃爆单元宽度的预测方法研究[J];核动力工程;2017年02期

8 李棕;崔得龙;;基于高斯过程回归和强化学习的云资源调度算法[J];电子设计工程;2017年11期

9 吴明;宋博;王锋;唐红;;基于高斯过程分类的调制识别方法[J];计算机仿真;2015年10期

10 陈宗帅;杨昌明;闫利宇;;基于计算机模拟与高斯过程回归的优化设计方法[J];计算机光盘软件与应用;2014年14期

相关会议论文 前4条

1 周晓康;吴少川;;基于高斯过程回归的室内无线信号源定位[A];2018中国信息通信大会论文摘要集[C];2018年

2 刘信恩;;高斯过程响应面法及其应用研究[A];中国工程物理研究院科技年报(2010年版)[C];2011年

3 何志昆;刘光斌;姚志成;赵曦晶;;基于高斯过程回归的FOG标度因数温度漂移建模新方法[A];第25届中国控制与决策会议论文集[C];2013年

4 庞梦非;唐国安;张美艳;;参数不确定性对桥梁振动特性的影响[A];第十届动力学与控制学术会议摘要集[C];2016年

相关博士学位论文 前10条

1 李平;面向任务的高斯过程隐变量模型扩展研究[D];南京航空航天大学;2018年

2 孙立剑;基于高斯过程的复杂光学曲面重建和多传感器数据融合方法研究[D];上海交通大学;2018年

3 王洪桥;高斯过程回归在不确定性量化中的应用[D];上海交通大学;2018年

4 陈凯;面向多任务模式学习与外推的自适应高斯过程算法研究[D];中国科学院大学(中国科学院深圳先进技术研究院);2019年

5 于晓默;面向制造生产过程的高斯过程优化理论研究及应用[D];广西大学;2015年

6 洪晓丹;基于复杂噪声的高斯过程回归建模方法研究[D];东华大学;2018年

7 潘伟;基于高斯过程的高炉炼铁过程辨识与预测[D];浙江大学;2012年

8 贺建军;基于高斯过程模型的机器学习算法研究及应用[D];大连理工大学;2012年

9 房晟辰;基于高斯过程回归及Trust-Tech的短期风电功率预测方法[D];天津大学;2016年

10 赵伟;复杂工程结构可靠度分析的高斯过程动态响应面方法研究[D];广西大学;2014年

相关硕士学位论文 前10条

1 钟友玲;基于高斯过程回归模型的深基坑变形预测方法研究[D];江西理工大学;2019年

2 李勇;杂波环境下基于高斯过程的扩展目标跟踪技术[D];杭州电子科技大学;2019年

3 张宇;基于高斯过程回归的高铁制动过程速度预测[D];北京交通大学;2019年

4 李烁;考虑测量误差的逆高斯过程退化建模与加速退化试验设计[D];上海交通大学;2018年

5 夏嘉欣;基于带有噪声输入稀疏高斯过程的人体姿态分析[D];上海交通大学;2018年

6 姜珊;基于高斯过程的偏微分方程数值解法构造[D];云南财经大学;2019年

7 朱泓钰;高斯过程模型对股票价格的预测研究[D];云南大学;2017年

8 杨成飞;基于高斯过程的智能采样策略研究[D];中国科学技术大学;2019年

9 范箫鸿;基于PSO算法和高斯过程的微波器件优化设计[D];江苏科技大学;2019年

10 周雪;基于高斯过程模型的室内定位方法研究[D];东北师范大学;2019年



本文编号:2747765

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2747765.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2839f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com