加权exceptional单位的和集与Galois环上的对角二次型的解
发布时间:2020-10-21 18:00
本文主要研究了有限交换环上加权exceptional单位的表示以及研究了伽罗环GR(p2,p2m)上对角二次型解的个数.在第一章中,我们主要介绍了有限交换环和伽罗瓦环的相关知识、exceptional单位的表示和对角二次型的背景.设R是一个含单位元有限交换环,第二章给出一个用来计算R中任意元素可以被表示成加权exceptional单位和个数的公式.设R=GR(p2,p2m)是Galois环,N(a1x12+…+anxn2=b)表示对角二次型a1x12+…anxn2= b解的个数,其中a1,…,an ∈ R*,x1,…,xn,b ∈_R.在第三章中,我们主要得到了N(ax2 = b),N(a1x12+ a2x22=b)和N(a1x12+a2x22+a3x32= b)的公式。
【学位单位】:南京师范大学
【学位级别】:硕士
【学位年份】:2018
【中图分类】:O153.3
【文章目录】:
Abstract in Chinese
Abstract in English
Chapter 1 Backgrounds and main theorems
§1.1 Preliminaries
§1.2 Introduction to the sumsets of weighted exceptional units and thediagonal quadratic forms
Chapter 2 On the sumsets of weighted exceptional units in a finite commu-tative ring
§2.1 Some important lemmas
§2.2 Proof of the main theorem
§2.3 A example on Galois rings
2,p2m)'>Chapter 3 The number of solutions of diagonal quadratic forms over Galoisrings GR(p2,p2m)
§3.1 Some important lemmas
§3.2 Proofs of the main theorems
Bibliography
致谢
【参考文献】
本文编号:2850431
【学位单位】:南京师范大学
【学位级别】:硕士
【学位年份】:2018
【中图分类】:O153.3
【文章目录】:
Abstract in Chinese
Abstract in English
Chapter 1 Backgrounds and main theorems
§1.1 Preliminaries
§1.2 Introduction to the sumsets of weighted exceptional units and thediagonal quadratic forms
Chapter 2 On the sumsets of weighted exceptional units in a finite commu-tative ring
§2.1 Some important lemmas
§2.2 Proof of the main theorem
§2.3 A example on Galois rings
2,p2m)'>Chapter 3 The number of solutions of diagonal quadratic forms over Galoisrings GR(p2,p2m)
§3.1 Some important lemmas
§3.2 Proofs of the main theorems
Bibliography
致谢
【参考文献】
相关期刊论文 前1条
1 LI Jin;ZHU ShiXin;FENG KeQin;;The Gauss sums and Jacobi sums over Galois ring GR(p~2 , r)[J];Science China(Mathematics);2013年07期
本文编号:2850431
本文链接:https://www.wllwen.com/kejilunwen/yysx/2850431.html