动力系统的复杂性及嵌入问题的研究
发布时间:2021-01-06 05:16
本文研究拓扑动力系统的复杂性理论。对于零熵系统,我们研究它们的拓扑复杂度、序列熵和熵维数;对于正熵系统,我们研究其中的混沌现象;对于无穷熵系统,我们研究平均维数及其相关的嵌入问题。本文共分五个章节。第一章是准备工作,包含了拓扑动力系统和遍历论中的一些基本概念和主要结果,以及在后续章节中需要用到的工具和定理。在第二章中,我们研究二维环面上一类特殊的斜积系统,它们都是一维环面上的某个无理旋转的扩充。我们计算了这类系统的拓扑复杂度,并利用新的方法证明其极小性,而且给出了这类系统为二阶系统的一个等价刻画。进一步,我们构造了一个极小distal系统,它具有线性的拓扑复杂度,但却不是二步幂零系统,从而否定地回答了 Host、Kra和Maass提出的是否每个具有线性拓扑复杂度的极小distal系统都是二步幂零系统这一问题。在第三章中,我们研究零熵系统的序列熵和熵维数,建立了动力系统与其诱导系统在这方面的关系。具体来说,我们证明了对于任意事先给定的正整数序列,一个拓扑动力系统沿着该序列的序列熵是零当且只当它的诱导系统沿着该序列的序列熵也是零。进一步地,作为这一结果的应用,我们证明了一个拓扑动力系统的上...
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:95 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
绪论
Introduction
1 Preliminaries
1.1 Topological dynamical systems and measure-preserving systems
1.1.1 Topological dynamical systems
1.1.2 A special class: systems of order 2
1.1.3 Factors of topological dynamical systems
1.1.4 Equicontinuity
1.1.5 Invariant measures and measure-preserving systems
1.1.6 Pointwise good sequences
1.1.7 Factors of measure-preserving systems
1.1.8 Conditional expectation and disintegration
1.2 Sequence entropy
1.2.1 Topological sequence entropy
1.2.2 Measure-theoretic sequence entropy
1.2.3 Relationship between topological and measure-theoretic entrop
1.2.4 Pinsker σ-algebra and applications
1.3 Entropy dimension
1.3.1 Dimension of a sequence of positive integers
1.3.2 Topological entropy dimension
1.3.3 Measure-theoretic entropy dimension
1.4 Mean dimension
1.5 Li-Yorke chaos
1.6 Toolbox
1.6.1 Continued fractions
1.6.2 Mycielski's theorem and an extension theorem
1.6.3 Baire spaces
1.6.4 Linear independence and affine independence
2 Group extensions over irrational rotations on the torus
2.1 Background
2.2 Topological complexity
2.3 Minimality and the maximal equicontinuous factor
2.4 An example
3 Sequence entropy and entropy dimension
3.1 Zero topological sequence entropy
3.2 Topological entropy dimension
3.3 Zero measure-theoretic sequence entropy
3.4 Measure-theoretic entropy dimension
4 Mean Li-Yorke chaos along good sequences
4.1 Characteristic σ-algebras
4.2 Good sequences for pointwise convergence
4.3 In positive entropy systems
4.4 Non-invertible case
5 The embedding problem in dynamical systems
5.1 Background
5.2 Rokhlin dimension: an embedding result
5.3 Takens' embedding theorem
5.4 The Lindenstrauss-Tsukamoto Conjecture: a remark
Bibliography
Acknowledgements
Publications
本文编号:2959997
【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校
【文章页数】:95 页
【学位级别】:博士
【文章目录】:
摘要
ABSTRACT
绪论
Introduction
1 Preliminaries
1.1 Topological dynamical systems and measure-preserving systems
1.1.1 Topological dynamical systems
1.1.2 A special class: systems of order 2
1.1.3 Factors of topological dynamical systems
1.1.4 Equicontinuity
1.1.5 Invariant measures and measure-preserving systems
1.1.6 Pointwise good sequences
1.1.7 Factors of measure-preserving systems
1.1.8 Conditional expectation and disintegration
1.2 Sequence entropy
1.2.1 Topological sequence entropy
1.2.2 Measure-theoretic sequence entropy
1.2.3 Relationship between topological and measure-theoretic entrop
1.2.4 Pinsker σ-algebra and applications
1.3 Entropy dimension
1.3.1 Dimension of a sequence of positive integers
1.3.2 Topological entropy dimension
1.3.3 Measure-theoretic entropy dimension
1.4 Mean dimension
1.5 Li-Yorke chaos
1.6 Toolbox
1.6.1 Continued fractions
1.6.2 Mycielski's theorem and an extension theorem
1.6.3 Baire spaces
1.6.4 Linear independence and affine independence
2 Group extensions over irrational rotations on the torus
2.1 Background
2.2 Topological complexity
2.3 Minimality and the maximal equicontinuous factor
2.4 An example
3 Sequence entropy and entropy dimension
3.1 Zero topological sequence entropy
3.2 Topological entropy dimension
3.3 Zero measure-theoretic sequence entropy
3.4 Measure-theoretic entropy dimension
4 Mean Li-Yorke chaos along good sequences
4.1 Characteristic σ-algebras
4.2 Good sequences for pointwise convergence
4.3 In positive entropy systems
4.4 Non-invertible case
5 The embedding problem in dynamical systems
5.1 Background
5.2 Rokhlin dimension: an embedding result
5.3 Takens' embedding theorem
5.4 The Lindenstrauss-Tsukamoto Conjecture: a remark
Bibliography
Acknowledgements
Publications
本文编号:2959997
本文链接:https://www.wllwen.com/kejilunwen/yysx/2959997.html