Reissner-Mindlin板问题的新连续有限元方法
发布时间:2021-03-24 03:51
基于三角形网格和四边形网格,分别通过增加Galerkin公式和修正板厚,提出了求解Reissner-Mindlin板问题的两类新的有限元方法.在这两类方法中,横向位移用协调(双)线性宏元或(双)二次元逼近,旋度用协调(双)线性元逼近.剪切应力可以由横向位移和旋转进行局部计算.在自然范数下,我们得到横向位移,旋度和剪切应力关于板厚的一致性的最优误差界.数值结果说明了理论的正确性和方法的有效性.
【文章来源】:武汉大学湖北省 211工程院校 985工程院校 教育部直属院校
【文章页数】:46 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
第一章 引言
第二章 预备知识
第一节 Sobolev空间及其相关知识
第二节 有限元分析基本理论
第三节 Reissner-Mindlin板模型
第三章 新有限元方法
第四章 方法(Ⅰ)的误差分析
第五章 方法(Ⅱ)的误差分析
第六章 数值算例
参考文献
攻读硕士期间完成的科研成果目录
致谢
【参考文献】:
期刊论文
[1]Reissner-Mindlin板问题带约束非协调旋转Q1有限元方法[J]. 胡俊,石钟慈. 计算数学. 2016(03)
[2]Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates[J]. GUO YuanHui,YU GuoZhu,XIE XiaoPing. Science China(Mathematics). 2013(08)
[3]Two lower order nonconforming quadrilateral elements for the Reissner-Mindlin plate[J]. HU Jun1 & SHI ZhongCi2 1 LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China 2 Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China. Science in China(Series A:Mathematics). 2008(11)
[4]On Choices of Stress Modes for Lower Order Quadrilateral Reissner-Mindlin Plate Elements[J]. Guanghui Hu and Xiaoping Xie School of Mathematics, Sichuan University, Chengdu 610064, China.. Numerical Mathematics A Journal of Chinese Universities(English Series). 2006(02)
[5]A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS[J]. Tian-xiao Zhou (Aeronautical Computing Technique Research Institute, Xi’an 710068, China)Xiaoping Xie (Mathematical College, Sichuan University, Chengdu 610064, China). Journal of Computational Mathematics. 2003(03)
[6]NONCONFORMING QUADRILATERAL ROTATED ELEMENT FOR REISSNER-MINDLIN PLATE[J]. Jun Hu Pingbing Ming Zhongci Shi (Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China). Journal of Computational Mathematics. 2003(01)
[7]THE PARTIAL PROJECTION METHOD IN THE FINITE ELEMENT DISCRETIZATION OF THE REISSNER-MINDLIN PLATE MODEL[J]. Zhou Tian-kiao(Computing Technology Research Institute, CAE, Xi’an, China). Journal of Computational Mathematics. 1995(02)
本文编号:3096998
【文章来源】:武汉大学湖北省 211工程院校 985工程院校 教育部直属院校
【文章页数】:46 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
第一章 引言
第二章 预备知识
第一节 Sobolev空间及其相关知识
第二节 有限元分析基本理论
第三节 Reissner-Mindlin板模型
第三章 新有限元方法
第四章 方法(Ⅰ)的误差分析
第五章 方法(Ⅱ)的误差分析
第六章 数值算例
参考文献
攻读硕士期间完成的科研成果目录
致谢
【参考文献】:
期刊论文
[1]Reissner-Mindlin板问题带约束非协调旋转Q1有限元方法[J]. 胡俊,石钟慈. 计算数学. 2016(03)
[2]Uniform analysis of a stabilized hybrid finite element method for Reissner-Mindlin plates[J]. GUO YuanHui,YU GuoZhu,XIE XiaoPing. Science China(Mathematics). 2013(08)
[3]Two lower order nonconforming quadrilateral elements for the Reissner-Mindlin plate[J]. HU Jun1 & SHI ZhongCi2 1 LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China 2 Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China. Science in China(Series A:Mathematics). 2008(11)
[4]On Choices of Stress Modes for Lower Order Quadrilateral Reissner-Mindlin Plate Elements[J]. Guanghui Hu and Xiaoping Xie School of Mathematics, Sichuan University, Chengdu 610064, China.. Numerical Mathematics A Journal of Chinese Universities(English Series). 2006(02)
[5]A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS[J]. Tian-xiao Zhou (Aeronautical Computing Technique Research Institute, Xi’an 710068, China)Xiaoping Xie (Mathematical College, Sichuan University, Chengdu 610064, China). Journal of Computational Mathematics. 2003(03)
[6]NONCONFORMING QUADRILATERAL ROTATED ELEMENT FOR REISSNER-MINDLIN PLATE[J]. Jun Hu Pingbing Ming Zhongci Shi (Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China). Journal of Computational Mathematics. 2003(01)
[7]THE PARTIAL PROJECTION METHOD IN THE FINITE ELEMENT DISCRETIZATION OF THE REISSNER-MINDLIN PLATE MODEL[J]. Zhou Tian-kiao(Computing Technology Research Institute, CAE, Xi’an, China). Journal of Computational Mathematics. 1995(02)
本文编号:3096998
本文链接:https://www.wllwen.com/kejilunwen/yysx/3096998.html