Moran型剪切集的维数和分类及高斯随机场的分形性质
发布时间:2021-10-13 04:37
剪切集是一类非常重要的分形集。在本文第三章,我们考虑一类剪切集称为Moran型剪切集,记为Ea。它是由间隔序列{ai}和正整数序列{nκ}生成的,构造过程见定义(2.2.1)。它是一类非常广泛的分形集,包含一般Moran结构。如果对每个κ=1,2,…,取nκ=2,则坟即为Cantor集Ca。对于一般的正整数序列{nκ},Ea的结构更一般更复杂,获得的主要结果如下:(i)给出了Ea的h-Hausdorff测度和h-packing测度的估计,这个估计是用序列{ai}和{nκ}表示的,推广并包含了已知结果。特别指出的是,我们构造了与Ea是双Lipschitz等价的两个齐次Moran集,由此得到Ea的更好的测度估计,从而得到用{ai}和{nκ}的子序列表示的Ea的Hausdorfl和packing维数公式,推广了Besicovitch和Taylor [5]的结果。(ii)证明存在连续凸函数h是Ea的Hausdorff量纲函数。进一步,在经典的局部点态维数的定义中用h代替rα,用这种点态维数定义的水平集给出了Ea的重分形分解。(iii)对Moran型剪切集Ea,Eb定义三种等价关系,分别用间隔序...
【文章来源】:华南理工大学广东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:86 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
Chapter 2 Preliminaries
2.1 Measures and dimensions
2.1.1 Hausdorff measure and Hausdorff dimension
2.1.2 Box dimension
2.1.3 Packing measure and packing dimension
2.2 Moran-type sets
2.2.1 Definition and notations
2.2.2 Equivalent relationships
2.3 Packing dimension profiles
2.3.1 Falconer and Howroyd-type packing dimension profiles
2.3.2 Howroyd-type box dimension profiles on(R~N,ρ)
2.3.3 Howroyd-type packing measure and dimension on(R~N,ρ)
2.3.4 The relationships among the three packing dimension profiles
Chapter 3 Dimensions and equivalences ofMoran-type cut-out set
3.1 Background
3.2 M ain results
3.2.1 Upper and lower bounds for h-Hausdorff and h-packing measures of E_α
3.2.2 Level set of Moran-type cut-out set
3.2.3 The equivalences of Moran-type cut-out set
Chapter 4 Packing Dimensions of theImages of Gaussian RandomFields
4.1 Background and main results
4.2 Packing dimension of X(E)
4.2.1 Packing dimension of X(E)in terms of Dim_d~ρE
4.2.2 Packing dimension of X(E)in terms of P-dim_d~ρE
Chapter 5 Packinggraphs of
5.1 Background and main results
5.2 Properties of packing dimension profiles on(R~N+d,τ)
5.3 Proof of Theorem 5.1.1
5.3.1 Preliminary lemmas
5.3.2 Proof of Theorem 5.1.1
5.4 Packing dimension profiles of the Cartesian product
Bibliography
Publications
Acknowledgements
中文概要
附件
【参考文献】:
期刊论文
[1]Pointwise dimensions of general Moran measures with open set condition[J]. LI JinJun 1,2 & WU Min 1*,1 Department of Mathematics,South China University of Technology,Guangzhou 510640,China;2 Department of Mathematics,Zhangzhou Normal University,Zhangzhou 363000,China. Science China(Mathematics). 2011(04)
[2]Uniform dimension results for Gaussian random fields[J]. WU DongSheng1 & XIAO YiMin2,31 Department of Mathematical Sciences,University of Alabama in Huntsville,Huntsville,AL 35899,USA 2 Department of Statistics and Probability,Michigan State University,East Lansing,MI 48824,USA 3 College of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China. Science in China(Series A:Mathematics). 2009(07)
[3]The multifractal spectrum of some Moran measures[J]. WU Min School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China. Science in China,Ser.A. 2005(08)
[4]Moran sets and Moran classes[J]. WEN ZhiyingDepartment of Mathematics, Tsinghua University, Beijing 100084, China. Chinese Science Bulletin. 2001(22)
[5]On the structures and dimensions of Moran sets[J]. 华苏,饶辉,文志英,吴军. Science in China,Ser.A. 2000(08)
本文编号:3433963
【文章来源】:华南理工大学广东省 211工程院校 985工程院校 教育部直属院校
【文章页数】:86 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
Chapter 2 Preliminaries
2.1 Measures and dimensions
2.1.1 Hausdorff measure and Hausdorff dimension
2.1.2 Box dimension
2.1.3 Packing measure and packing dimension
2.2 Moran-type sets
2.2.1 Definition and notations
2.2.2 Equivalent relationships
2.3 Packing dimension profiles
2.3.1 Falconer and Howroyd-type packing dimension profiles
2.3.2 Howroyd-type box dimension profiles on(R~N,ρ)
2.3.3 Howroyd-type packing measure and dimension on(R~N,ρ)
2.3.4 The relationships among the three packing dimension profiles
Chapter 3 Dimensions and equivalences ofMoran-type cut-out set
3.1 Background
3.2 M ain results
3.2.1 Upper and lower bounds for h-Hausdorff and h-packing measures of E_α
3.2.2 Level set of Moran-type cut-out set
3.2.3 The equivalences of Moran-type cut-out set
Chapter 4 Packing Dimensions of theImages of Gaussian RandomFields
4.1 Background and main results
4.2 Packing dimension of X(E)
4.2.1 Packing dimension of X(E)in terms of Dim_d~ρE
4.2.2 Packing dimension of X(E)in terms of P-dim_d~ρE
Chapter 5 Packinggraphs of
5.1 Background and main results
5.2 Properties of packing dimension profiles on(R~N+d,τ)
5.3 Proof of Theorem 5.1.1
5.3.1 Preliminary lemmas
5.3.2 Proof of Theorem 5.1.1
5.4 Packing dimension profiles of the Cartesian product
Bibliography
Publications
Acknowledgements
中文概要
附件
【参考文献】:
期刊论文
[1]Pointwise dimensions of general Moran measures with open set condition[J]. LI JinJun 1,2 & WU Min 1*,1 Department of Mathematics,South China University of Technology,Guangzhou 510640,China;2 Department of Mathematics,Zhangzhou Normal University,Zhangzhou 363000,China. Science China(Mathematics). 2011(04)
[2]Uniform dimension results for Gaussian random fields[J]. WU DongSheng1 & XIAO YiMin2,31 Department of Mathematical Sciences,University of Alabama in Huntsville,Huntsville,AL 35899,USA 2 Department of Statistics and Probability,Michigan State University,East Lansing,MI 48824,USA 3 College of Mathematics and Computer Science,Anhui Normal University,Wuhu 241000,China. Science in China(Series A:Mathematics). 2009(07)
[3]The multifractal spectrum of some Moran measures[J]. WU Min School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China. Science in China,Ser.A. 2005(08)
[4]Moran sets and Moran classes[J]. WEN ZhiyingDepartment of Mathematics, Tsinghua University, Beijing 100084, China. Chinese Science Bulletin. 2001(22)
[5]On the structures and dimensions of Moran sets[J]. 华苏,饶辉,文志英,吴军. Science in China,Ser.A. 2000(08)
本文编号:3433963
本文链接:https://www.wllwen.com/kejilunwen/yysx/3433963.html