构造(2+1)维扩展浅水波方程的新奇精确解
发布时间:2022-11-03 23:09
本文研究了(2+1)维扩展浅水波方程,通过变量变换得到双线性形式.基于符号计算,获得一类新奇精确解.这些解包含一个任意实函数φ(y),选择特殊的函数φ(y)得到了这些解的动态图,孤子传播表明含有φ(y)的孤子比没有φ(y)的孤子更一般,并且φ(y)可以影响孤子解的特征.
【文章页数】:6 页
【参考文献】:
期刊论文
[1]Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation[J]. 马正义,费金喜,陈俊超. Communications in Theoretical Physics. 2018(11)
[2]A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation[J]. 陈美丹,李咸,王瑶,李彪. Communications in Theoretical Physics. 2017(06)
[3]Lump Solutions and Interaction Phenomenon for (2+1)-Dimensional Sawada–Kotera Equation[J]. 黄丽丽,陈勇. Communications in Theoretical Physics. 2017(05)
[4]Lump Solution of (2+1)-Dimensional Boussinesq Equation[J]. 马彩虹,邓爱平. Communications in Theoretical Physics. 2016(05)
本文编号:3700799
【文章页数】:6 页
【参考文献】:
期刊论文
[1]Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation[J]. 马正义,费金喜,陈俊超. Communications in Theoretical Physics. 2018(11)
[2]A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation[J]. 陈美丹,李咸,王瑶,李彪. Communications in Theoretical Physics. 2017(06)
[3]Lump Solutions and Interaction Phenomenon for (2+1)-Dimensional Sawada–Kotera Equation[J]. 黄丽丽,陈勇. Communications in Theoretical Physics. 2017(05)
[4]Lump Solution of (2+1)-Dimensional Boussinesq Equation[J]. 马彩虹,邓爱平. Communications in Theoretical Physics. 2016(05)
本文编号:3700799
本文链接:https://www.wllwen.com/kejilunwen/yysx/3700799.html