具有负素数欧拉示性数的弧正则地图
发布时间:2023-03-02 18:06
本篇论文讨论了一类非面传递的弧正则地图。论文中将这类地图记为M2。一般的,一个地图M的自同构是保持地图各个组成部分间的关联关系的旗集上的置换。所有这些置换在置换复合下形成M的自同构群Aut(M)。一个地图的重要性质是Aut(M)总是旗集上的半正则置换群。如果Aut(M)在地图的弧集上也是正则的,则该地图被称为弧正则地图。本文的第一个重要结果是每个弧正则地图都有一个陪集表示,即它的基本成分可以通过其自同构群G来构造,即地图的点,边以及面可以由一些群G的子群的陪集表示。根据G的边稳定子的作用,弧正则地图可以被进一步分为两类:面传递地图和面不传递地图。我们用M2表示第二类弧正则地图。通过将地图的点,边和面视为支撑曲面S三角剖分的0维胞腔、1维胞腔和2维胞腔,每个地图都具有Euler示性数。本文旨在研究Euler示性数为负素数的M2的分类,并通过对M2地图的陪集表示,将对其的分类刻画问题转化为了对具有特定性质群的分类问题。一个弧正则地图的Euler示性数r对其陪集表示对应的群G的Sylow子群有很大限制,如果r整除|G|,则G的每个Sylow p-子群包含指数为p的循环子群或二面体子群,而如果...
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
ABSTRACT (In Chinese)
ABSTRACT (In English)
Chapter 1 Introduction
1.1 Research Bacground
1.2 Significance
1.3 Structure and Results of This Thesis
Chapter 2 Preliminaries
2.1 Basic Concepts
2.2 Solvable Group
2.3 Nilpotent
2.4 Frattini Subgroup
2.5 Fitting Subgroup
2.6 Classical Group
2.7 Extension
2.8 Results about Dihedral Groups and p-Groups
2.9 Basic Results in Topology Theory
2.10 Fundamental Group
2.11 Manifolds and Surfaces
2.12 Maps
2.13 Brief Summary
Chapter 3 Coset representation of arc-regular maps
3.1 Construction of arc-regular maps by groups
3.2 Basic properties of arc-regular maps
3.3 Brief Summary
Chapter 4 The Euler characteristic connot divide|G|
4.1 Arguments about the order of G
4.2 Possible structures of G and conditions for generators
4.3 Brief Summary
Chapter 5 The Euler characteristic is a divisor of the order of G
5.1 Condition for 4-tuples(|Gv|,|Gf1|,|Gf2
|,(?))
5.2 Arc-regular maps whose coset representation compatible with a 4-tuple con-taining an odd integer
5.3 Arc-regular maps whose coset representation compatible 4-tuples containingonly even integers
5.4 Brief Summary
CONCLUSIONS (In English)
CONCLUSIONS (In Chinese)
Magma Code for Example 4.2.1
References
Acknowledgements
本文编号:3752376
【文章页数】:74 页
【学位级别】:硕士
【文章目录】:
ABSTRACT (In Chinese)
ABSTRACT (In English)
Chapter 1 Introduction
1.1 Research Bacground
1.2 Significance
1.3 Structure and Results of This Thesis
Chapter 2 Preliminaries
2.1 Basic Concepts
2.2 Solvable Group
2.3 Nilpotent
2.4 Frattini Subgroup
2.5 Fitting Subgroup
2.6 Classical Group
2.7 Extension
2.8 Results about Dihedral Groups and p-Groups
2.9 Basic Results in Topology Theory
2.10 Fundamental Group
2.11 Manifolds and Surfaces
2.12 Maps
2.13 Brief Summary
Chapter 3 Coset representation of arc-regular maps
3.1 Construction of arc-regular maps by groups
3.2 Basic properties of arc-regular maps
3.3 Brief Summary
Chapter 4 The Euler characteristic connot divide|G|
4.1 Arguments about the order of G
4.2 Possible structures of G and conditions for generators
4.3 Brief Summary
Chapter 5 The Euler characteristic is a divisor of the order of G
5.1 Condition for 4-tuples(|Gv|,|Gf1|,|Gf2
|,(?))
5.2 Arc-regular maps whose coset representation compatible with a 4-tuple con-taining an odd integer
5.3 Arc-regular maps whose coset representation compatible 4-tuples containingonly even integers
5.4 Brief Summary
CONCLUSIONS (In English)
CONCLUSIONS (In Chinese)
Magma Code for Example 4.2.1
References
Acknowledgements
本文编号:3752376
本文链接:https://www.wllwen.com/kejilunwen/yysx/3752376.html