界面问题的增扩有限元方法
发布时间:2025-02-06 14:16
界面问题广泛存在于实际应用中,如流体力学,电磁波的传播、材料科学和生物科学。它通常涉及求解耦合的偏微分方程组。本文致力于研究界面问题的有限元方法。根据网格单元和界面之间的拓扑关系,界面问题的有限元方法(FEMs)可分为两大类,即界面匹配网格方法和界面非匹配网格方法。界面匹配网格方法的优点在于误差分析简单,并且收敛阶是最优的。然而,在界面随时间演变的情况下,让网格匹配界面需要重新剖分网格。当界面拓扑结构变化时,例如破裂或者合并,生成匹配界面的网格是很困难的。因此,界面非匹配网格方法成了一个重要的研究方向。界面非匹配网格方法主要有两种,扩展有限元法(XFEMs)和浸入界面有限元方法(IFEMs)。两种方法都是对有限元空间进行修正,以得到最优的插值误差估计。但是,这两种方法都有各自的一些缺点。扩展有限元方法有许多不同的种类,其中只有尼采-扩展有限元方法有严格的理论分析。对于尼采-扩展有限元方法,它破坏了解的连续性,因此需要在离散的弱形式加额外的惩罚项。对于浸入界面有限元方法,它的基函数构造依赖于界面跳跃条件并且误差分析相对困难。为了克服这些缺点,我们提出了一种新的界面非匹配网格方法,即协调增扩...
【文章页数】:102 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Model problems and applications
1.2 An overview of FEMs for interface problems
1.3 Notation and Definitions
Chapter 2 A conforming enriched finite element method for elliptic inter-face problems
2.1 The conforming enriched finite element method
2.2 Properties of the enrichment function
2.3 Error analysis
2.4 Numerical examples
2.4.1 Numerical examples with two sub-domains
2.4.2 Numerical examples with three sub-domains
2.4.3 Numerical examples with variable coefficients
Chapter 3 A conforming enriched finite element method for Stokes inter-face problems
3.1 Weak forms of Stokes interface problems
3.2 Stability analysis
3.3 Error analysis
3.3.1 Approximation properties
3.3.2 An a prior error estimate
3.4 Numerical examples
3.4.1 Example 1: the case of a piecewise constant viscosity
3.4.2 Example 2: the case of a variable viscosity
Chapter 4 A conforming enriched finite element method for Stokes-ellipticinterface problems
4.1 Weak forms of Stokes-elliptic interface problems
4.2 Stability analysis
4.3 Error analysis
4.3.1 Approximation properties
4.3.2 An a prior error estimate
4.4 Numerical examples
4.4.1 Example 1: the case of a piecewise constant viscosity
4.4.2 Example 2: the case of a variable viscosity
Chapter 5 Conclusions and future works
5.1 A framework of FEMs for interface problems
5.2 Future works
Bibliography
Publications and Completed Papers
Acknowledgements
本文编号:4030494
【文章页数】:102 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
Chapter 1 Introduction
1.1 Model problems and applications
1.2 An overview of FEMs for interface problems
1.3 Notation and Definitions
Chapter 2 A conforming enriched finite element method for elliptic inter-face problems
2.1 The conforming enriched finite element method
2.2 Properties of the enrichment function
2.3 Error analysis
2.4 Numerical examples
2.4.1 Numerical examples with two sub-domains
2.4.2 Numerical examples with three sub-domains
2.4.3 Numerical examples with variable coefficients
Chapter 3 A conforming enriched finite element method for Stokes inter-face problems
3.1 Weak forms of Stokes interface problems
3.2 Stability analysis
3.3 Error analysis
3.3.1 Approximation properties
3.3.2 An a prior error estimate
3.4 Numerical examples
3.4.1 Example 1: the case of a piecewise constant viscosity
3.4.2 Example 2: the case of a variable viscosity
Chapter 4 A conforming enriched finite element method for Stokes-ellipticinterface problems
4.1 Weak forms of Stokes-elliptic interface problems
4.2 Stability analysis
4.3 Error analysis
4.3.1 Approximation properties
4.3.2 An a prior error estimate
4.4 Numerical examples
4.4.1 Example 1: the case of a piecewise constant viscosity
4.4.2 Example 2: the case of a variable viscosity
Chapter 5 Conclusions and future works
5.1 A framework of FEMs for interface problems
5.2 Future works
Bibliography
Publications and Completed Papers
Acknowledgements
本文编号:4030494
本文链接:https://www.wllwen.com/kejilunwen/yysx/4030494.html