当前位置:主页 > 科技论文 > 数学论文 >

近似周期时间序列的趋势提取方法及其在消费信贷余额预测中的应用

发布时间:2017-09-10 02:40

  本文关键词:近似周期时间序列的趋势提取方法及其在消费信贷余额预测中的应用


  更多相关文章: 近似周期广义差分算子余额预测


【摘要】:周期性时间序列大量地存在于人们的生活和社会活动之中,比如奶牛的产奶量序列、GDP序列、上海市月度最高气温序列等等。有一些时间序列看起来像是具有周期性,但是其“周期”长度并不固定,比如太阳黑子序列,大概11年为一个周期,但是事实上在二十世纪中太阳黑子的“周期”分别为12,11,9,10,10,11,11,10和11。我们把这种时间序列称作近似周期时间序列。本文首先给出了近似周期时间序列的概念,然后提出了一种提取近似周期时间序列的近似周期的方法,并且提出了广义差分算子。本文提出的广义差分算子不仅可以消除时间序列的时间增长趋势和周期性影响,而且还可以消除近似周期影响,是已有差分算子的一个重要推广。最后,以消费信贷产品余额序列作为实证研究对象,进一步说明了近似周期时间序列在社会经济生活的存在性,同时展现了本文所提出的研究近似周期时间序列的方法的有效性。在实证研究中,首先通过线性变换计算出每个“周期”的长度,再利用广义差分算子消除时间趋势,利用样本外数据进行预测的相对误差不超过千分之三,这说明利用近似周期时间序列拟合消费信贷产品余额序列的效果非常好。
【关键词】:近似周期广义差分算子余额预测
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O211.61
【目录】:
  • 摘要7-8
  • ABSTRACT8-9
  • 一、绪论9-15
  • 1.1 选题背景与研究意义9-10
  • 1.2 文献综述10-13
  • 1.3 研究目标、研究内容和研究方法13-14
  • 1.3.1 研究目标13
  • 1.3.2 研究内容13
  • 1.3.3 研究方法13-14
  • 1.4 创新与不足14-15
  • 二、近似周期时间序列概念及分析15-29
  • 2.1 近似周期函数15-17
  • 2.2 近似周期时间序列17-19
  • 2.3 提取近似周期趋势19-24
  • 2.3.1 确定Tk,k=1,219
  • 2.3.2 估计刻度变换g19-21
  • 2.3.3 估计近似周期函数f21-22
  • 2.3.4 示例22-24
  • 2.4 消除近似周期趋势24-29
  • 2.4.1 广义差分算子25-26
  • 2.4.2 广义差分算子示例26-29
  • 三、消费信贷余额序列分析29-37
  • 3.1 背景介绍29-30
  • 3.2 对消费信贷余额序列建模30-37
  • 四、参考文献37-39
  • 作者在攻读研究生期间己发表论文39-40
  • 五、致谢40

【相似文献】

中国期刊全文数据库 前10条

1 施久玉,杜金观;有限个状态时间序列的某些结果[J];应用数学学报;1990年01期

2 冯希杰;长江三峡及其邻区断裂活动时间序列[J];华南地震;1991年02期

3 王霞,郭嗣琮,刘淑娟;时间序列模糊滑动预测[J];辽宁工程技术大学学报(自然科学版);1999年03期

4 温品人;时间序列预测法的实际应用分析[J];江苏广播电视大学学报;2001年06期

5 许清海;混沌投资时间序列的嬗变[J];漳州师范学院学报(自然科学版);2003年01期

6 程毛林;时间序列系统建模预测的一种新方法[J];数学的实践与认识;2004年08期

7 高洁;长记忆时间序列适应性预测的应用[J];江南大学学报;2004年05期

8 高洁;孙立新;;长记忆时间序列的适应性预测误差的谱密度[J];统计与决策;2006年13期

9 杨钟瑾;;浅谈时间序列的分析预测[J];中国科技信息;2006年14期

10 李健;孙广中;许胤龙;;基于时间序列的预测模型应用与异常检测[J];计算机辅助工程;2006年02期

中国重要会议论文全文数据库 前10条

1 周家斌;张海福;杨桂英;;多维多步时间序列预报方法及其应用[A];中国现场统计研究会第九届学术年会论文集[C];1999年

2 马培蓓;纪军;;基于时间序列的航空备件消耗预测[A];中国系统工程学会决策科学专业委员会第六届学术年会论文集[C];2005年

3 卢世坤;李夕海;牛超;陈蛟;;时间序列的非线性非平稳特性研究综述[A];国家安全地球物理丛书(八)——遥感地球物理与国家安全[C];2012年

4 李强;;基于线性模型方法对时间序列中异常值的检测及证券实证分析[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(上册)[C];2002年

5 戴丽金;何振峰;;基于云模型的时间序列相似性度量方法[A];第八届中国不确定系统年会论文集[C];2010年

6 谢美萍;赵希人;庄秀龙;;多维非线性时间序列的投影寻踪学习逼近[A];'99系统仿真技术及其应用学术交流会论文集[C];1999年

7 张大斌;李红燕;刘肖;张文生;;非线性时问序列的小波-模糊神经网络集成预测方法[A];第十五届中国管理科学学术年会论文集(下)[C];2013年

8 黄云贵;;基于时间序列的电网固定资产投资规模研究[A];2012年云南电力技术论坛论文集(文摘部分)[C];2012年

9 李松臣;张世英;;时间序列高阶矩持续和协同持续性研究[A];21世纪数量经济学(第8卷)[C];2007年

10 陈赫;罗声求;;历史横断面数据的时间序列化[A];科学决策与系统工程——中国系统工程学会第六次年会论文集[C];1990年

中国重要报纸全文数据库 前6条

1 ;《时间序列与金融数据分析》[N];中国信息报;2004年

2 何德旭 王朝阳;时间序列计量经济学:协整与有条件的异方差自回归[N];中国社会科学院院报;2003年

3 刘俏;让数据坦白真相[N];21世纪经济报道;2003年

4 西南证券高级研究员 董先安邋德圣基金研究中心 郭奔宇;预计6月CPI同比上涨7.2%[N];证券时报;2008年

5 东证期货 王爱华 杨卫东;两年涨跌轮回 秋季普遍下跌[N];期货日报;2009年

6 任勇邋郑重;中国对世界钢材价格的影响实证分析[N];现代物流报;2007年

中国博士学位论文全文数据库 前10条

1 张墨谦;遥感时间序列数据的特征挖掘:在生态学中的应用[D];复旦大学;2014年

2 张德成;滑坡预测预报研究[D];昆明理工大学;2015年

3 苗圣法;时间序列的模式检测[D];兰州大学;2015年

4 翁同峰;时间序列与复杂网络之间等价性问题及表征应用研究[D];哈尔滨工业大学;2015年

5 杨婷婷;用Argo浮标结合卫星观测估算北太平洋经向热输运[D];中国科学院研究生院(海洋研究所);2015年

6 史文彬;时间序列的相关性及信息熵分析[D];北京交通大学;2016年

7 王晓晔;时间序列数据挖掘中相似性和趋势预测的研究[D];天津大学;2003年

8 李桂玲;时间序列的分割及不一致发现研究[D];华中科技大学;2012年

9 周勇;时间序列时序关联规则挖掘研究[D];西南财经大学;2008年

10 张勇;时间序列模式匹配技术研究[D];华中科技大学;2012年

中国硕士学位论文全文数据库 前10条

1 陈健;基于多变量相空间重构的投资组合策略研究[D];华南理工大学;2015年

2 兰鑫;时间序列的复杂网络转换策略研究[D];西南大学;2015年

3 米晓将;区域尺度下月均气温的时空演化格局研究[D];昆明理工大学;2015年

4 张鸣敏;基于支持向量回归的PM_(2.5)浓度预测研究[D];南京信息工程大学;2015年

5 林健;基于改进小世界回声状态网的时间序列预测[D];渤海大学;2015年

6 曹智丽;日气温和干旱指数支持向量回归预测方法[D];南京信息工程大学;2015年

7 高雄飞;基于分形理论的土壤含水量时间序列特性分析[D];长安大学;2015年

8 姚茜;城市安全生产发展目标研究[D];中国地质大学(北京);2015年

9 谢翠颖;苏州社会消费品零售总额简析[D];苏州大学;2015年

10 包仁义;基于时间序列的搜索引擎评估模型算法研究[D];东北师范大学;2015年



本文编号:824267

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/824267.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户80feb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com