与EKR定理相关的两个极值问题
发布时间:2017-09-18 12:34
本文关键词:与EKR定理相关的两个极值问题
【摘要】:极值组合是组合数学的一个分支,其主要研究有限集的子集构成的集族中满足一些限定条件的子集族的基数的上界以及其基数达到上界时的结构.一个著名的定理是1928年Sperner提出的:n元集合的子集构成的最大反链(任意两个集合无包含关系的集族)为该n元集合的所有[n/2J元子集构成的集族或所有[n/2]元子集构成的集族.Sperner定理的提出引起了数学家们广泛的兴趣,经过近一个世纪的发展,Sperner理论已经成为了一门完善的理论.另外一个著名的定理是由Erdos, Ko和Rado在1961年提出的(通常简称为EKR定理),该定理证明了一个n元集合的r元子集构成的最大交族是一个星(2rn).EKR定理经过几十年的发展已经有了各种形式的推广,但和Sperner理论相比较而言,还未成为一门系统的理论,还有很多课题需要研究.全文共分为三个部分,概括如下:第一部分,我们介绍了极值组合中的一些基本概念和一些经典的结果,比如Sperner定理,EKR定理等.同时介绍了本文将用到的一些基本概念和基本结果;第二部分,我们研究了子集格的一个特殊子集的交族;第三部分,我们考虑了n元集合上的标号集的匹配数给定的子集族的基数的上界及其基数达到上界时的结构.
【关键词】:布尔格 交族 EKR定理 标号集 匹配数
【学位授予单位】:浙江师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157
【目录】:
- 摘要3-4
- Abstract4-7
- 第一章 绪论7-23
- 1.1 前言7-8
- 1.2 相关概念及EKR定理的研究现状8-20
- 1.2.1 一般的交性质的推广8-11
- 1.2.2 cross-交性质的推广11-13
- 1.2.3 t-交性质的推广13-17
- 1.2.4 EKR性质的直积定理17-20
- 1.3 本文的主要研究内容20-23
- 第二章 子集格的一个特殊子集的交族23-33
- 2.1 一些引理24-25
- 2.2 定理2.2的证明25-33
- 第三章 一个特殊标号集的匹配数一定的最大子集族33-39
- 3.1 一些引理33-34
- 3.2 定理3.1的证明34-39
- 参考文献39-44
- 攻读学位期间取得的研究成果44-45
- 致谢45-47
- 附件47
【相似文献】
中国期刊全文数据库 前1条
1 查晓亚,韩绍岑;关于Sperner系和EKR系中集合的平均容量[J];华中工学院学报;1985年06期
中国硕士学位论文全文数据库 前1条
1 卫世秀;与EKR定理相关的两个极值问题[D];浙江师范大学;2015年
,本文编号:875595
本文链接:https://www.wllwen.com/kejilunwen/yysx/875595.html