木霉菌WL-Go对硒和硒合金纳米粒子的生物合成、表征及其应用
发布时间:2024-05-16 04:14
本文利用真菌Trichoderma sp.WL-Go合成纳米硒(Se NPs)和硒化铅纳米颗粒(PbSe NPs),与传统方法相比,该方法是一种较为简单且环境友好的合成方法。前期的研究表明菌株WL-Go具有极强的生长能力,且能在胞外分泌大量生物活性物质,例如氧化还原蛋白、多糖及诸多其它次生代谢产物等,合成的两种非金属和半导体纳米颗粒均展示出较高产率和良好的分散性。通过过滤获得菌株WL-Go的培养基上清液,并利用该上清液合成SeNPs。研究表明Se NPs合成的最佳条件是pH为8、SeO2在菌株培养24 h后接种以及SeO2浓度为2mM。紫外-可见光谱(UV-vis)表征表明合成的纳米硒溶液在550 nm处出现明显的特征吸收峰;而透射电子显微镜(TEM)图像显示合成的纳米硒颗粒呈现球形和伪球形,尺寸分布为20-220 nm;X射线衍射(XRD)分析表明Se NPs在(100)、(101)和(102)面出现特征吸收峰,表明合成的纳米颗粒为面心立方体结构;傅里叶红外光谱(FTIR)分析表明合成的纳米硒颗粒表面存在着一些官能团例如C=C、C-C以及-...
【文章页数】:88 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Trichoderma species
1.2 Background of Selenium
1.2.1 Selenium toxicity
1.2.2 Bioremediation abilities of selenium
1.2.3 Microbial reduction mechanisms and recovery of biogenic selenium (Se0) nanoparticles
1.3 Genesis of nanotechnology
1.4 Physical synthesis of nanoparticles
1.5 Chemical synthesis of nanoparticles
1.6 Biological synthesis of nanoparticles
1.6.1 Biosynthesis of nanoparticles by plants
1.6.2 Synthesis by microorganisms
1.7 Mono-nanoparticles and bimetallic nanoparticles synthesis route
1.8 Semiconductor nanoparticles
1.9 Factors affecting synthesis of nanoparticles
1.9.1 Temperature
1.9.2 pH
1.9.3 Reaction time
1.9.4 Precursors concentration
1.10 Global outlook on nanotechnology and its applications
1.11 Research objectives, methodology, and contents of technical routes
1.11.1 Research Objectives
1.11.2 Research methodology
1.11.3 Technical route of research and experiments
2 Experimental Methods
2.1 Materials
2.2 Biosynthesis of selenium nanoparticles (Se NPs) by Trichoderma sp. WL-Go
2.2.1 Synthesis of Se NPs at different p H
2.2.2 Synthesis of Se NPs at different inoculation time
2.2.3 Synthesis of Se NPs at different concentration
2.2.4 The possible mechanism of the Se NPs synthesis
2.3 Preparation of lead selenide semiconductor nanoparticles (Pb Se NPs)
2.3.1 Synthesis of Pb Se NPs at different p H
2.3.2 Synthesis of Pb Se NPs at different Trichoderma sp. WL-Go biomass
2.3.3 Synthesis of Pb Se NPs at different concentration ratio
2.4 Characterization techniques of synthesized nanoparticles
2.5 Antimicrobial activity
2.6 Antioxidant activity
2.7 Photocatalytic activity
3 Detailed discussions on synthesis, characterization and biocompatible and antioxidant activity of Se NPs by Trichoderma sp. WL-Go
3.1 Introduction
3.2 Experimental section
3.3 Results and discussion
3.3.1 Synthesis of Se NPs at different p H
3.3.2 Synthesis of Se NPs at different Se02 inoculation time
3.3.3 Synthesis of Se NPs at different Se O2 concentration
3.4 Characterization of Se NPs
3.4.1 TEM
3.4.2 X-ray diffraction (XRD)
3.4.3 ICP-OES
3.4.4 The possible mechanism of the Se NPs synthesis
3.4.5 SDS-PAGE and Zeta potential/DLS
3.5 Antimicrobial/ Biocompatibility properties of Se NPs synthesized Trichoderma sp. WL-Go in culture broth
3.6 Antioxidant activity of Se NPs
4 Synthesis of Pb Se NPs by Trichoderma sp. WL-Go
4.1 Introduction
4.2 Experimental section
4.3 Results and discussion
4.4 Optimal synthesis conditions of Pb Se NPs
4.5 Absorbance of powdered Se NPs and Pb Se NPs by UV-vis analysis
4.6 Characterization of Pb Se NPs
4.6.1 Transmission Electron Microscopy
4.6.2 X-ray diffraction analysis
4.6.3 Fourier transfer infra-red spectroscopy
4.6.4 Raman Spectroscopy
4.6.5 Photoluminescence (PL) Spectroscopy
4.7 Antioxidant activity of Pb Se NPs
4.8 Photocatalytic activity of Pb Se NPs
5 Conclusions and recommendations
5.1 Conclusions
5.2 Recommendation
References
Research Project and Publications during the Study in MSc Environmental Science andEngineering
Acknowledgement
Curriculum Vitae
本文编号:3974673
【文章页数】:88 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Trichoderma species
1.2 Background of Selenium
1.2.1 Selenium toxicity
1.2.2 Bioremediation abilities of selenium
1.2.3 Microbial reduction mechanisms and recovery of biogenic selenium (Se0) nanoparticles
1.3 Genesis of nanotechnology
1.4 Physical synthesis of nanoparticles
1.5 Chemical synthesis of nanoparticles
1.6 Biological synthesis of nanoparticles
1.6.1 Biosynthesis of nanoparticles by plants
1.6.2 Synthesis by microorganisms
1.7 Mono-nanoparticles and bimetallic nanoparticles synthesis route
1.8 Semiconductor nanoparticles
1.9 Factors affecting synthesis of nanoparticles
1.9.1 Temperature
1.9.2 pH
1.9.3 Reaction time
1.9.4 Precursors concentration
1.10 Global outlook on nanotechnology and its applications
1.11 Research objectives, methodology, and contents of technical routes
1.11.1 Research Objectives
1.11.2 Research methodology
1.11.3 Technical route of research and experiments
2 Experimental Methods
2.1 Materials
2.2 Biosynthesis of selenium nanoparticles (Se NPs) by Trichoderma sp. WL-Go
2.2.1 Synthesis of Se NPs at different p H
2.2.2 Synthesis of Se NPs at different inoculation time
2.2.3 Synthesis of Se NPs at different concentration
2.2.4 The possible mechanism of the Se NPs synthesis
2.3 Preparation of lead selenide semiconductor nanoparticles (Pb Se NPs)
2.3.1 Synthesis of Pb Se NPs at different p H
2.3.2 Synthesis of Pb Se NPs at different Trichoderma sp. WL-Go biomass
2.3.3 Synthesis of Pb Se NPs at different concentration ratio
2.4 Characterization techniques of synthesized nanoparticles
2.5 Antimicrobial activity
2.6 Antioxidant activity
2.7 Photocatalytic activity
3 Detailed discussions on synthesis, characterization and biocompatible and antioxidant activity of Se NPs by Trichoderma sp. WL-Go
3.1 Introduction
3.2 Experimental section
3.3 Results and discussion
3.3.1 Synthesis of Se NPs at different p H
3.3.2 Synthesis of Se NPs at different Se02 inoculation time
3.3.3 Synthesis of Se NPs at different Se O2 concentration
3.4 Characterization of Se NPs
3.4.1 TEM
3.4.2 X-ray diffraction (XRD)
3.4.3 ICP-OES
3.4.4 The possible mechanism of the Se NPs synthesis
3.4.5 SDS-PAGE and Zeta potential/DLS
3.5 Antimicrobial/ Biocompatibility properties of Se NPs synthesized Trichoderma sp. WL-Go in culture broth
3.6 Antioxidant activity of Se NPs
4 Synthesis of Pb Se NPs by Trichoderma sp. WL-Go
4.1 Introduction
4.2 Experimental section
4.3 Results and discussion
4.4 Optimal synthesis conditions of Pb Se NPs
4.5 Absorbance of powdered Se NPs and Pb Se NPs by UV-vis analysis
4.6 Characterization of Pb Se NPs
4.6.1 Transmission Electron Microscopy
4.6.2 X-ray diffraction analysis
4.6.3 Fourier transfer infra-red spectroscopy
4.6.4 Raman Spectroscopy
4.6.5 Photoluminescence (PL) Spectroscopy
4.7 Antioxidant activity of Pb Se NPs
4.8 Photocatalytic activity of Pb Se NPs
5 Conclusions and recommendations
5.1 Conclusions
5.2 Recommendation
References
Research Project and Publications during the Study in MSc Environmental Science andEngineering
Acknowledgement
Curriculum Vitae
本文编号:3974673
本文链接:https://www.wllwen.com/projectlw/swxlw/3974673.html