互穿聚合物网络炭化法制备孔结构可控碳材料及电容性能研究
发布时间:2018-04-19 04:18
本文选题:互穿聚合物网络 + 有效比表面积 ; 参考:《兰州理工大学》2017年硕士论文
【摘要】:本文综述了超级电容器最新研究进展,重点对超级电容器碳材料的制备和结构调控技术发展现状进行了综述。对于双电层电容器来说,系统研究碳材料的孔隙率和孔径分布与超级电容性能关系,是一个非常重要的基础科学问题。遗憾的是对于这一问题基本都止步于定性的说明或解释,没有有力的实验验证。这一方面是因为体系的复杂性,另一方面是由于碳材料结构的不可控性。据此,本课题提出了互穿聚合物网络碳化法制备孔径结构精确可控的碳电极材料的新方法。本研究课题的实施遵循聚合物聚合可控-碳材料结构可控-高性能超级电容器碳电极材料为主线的研究路线,即通过控制互穿聚合物网络中两聚合物的相对含量来调控互穿聚合物网络的形态结构,进而调控碳材料的孔径结构。主要内容如下:(1)拥有可控孔径和有效比表面积的分级多孔碳的合成是由一个简单的碳化程序提出的,并可作为电极材料应用于高性能电化学电容器中。这个程序是基于交联的PS和PMMA的互穿聚合物网络的碳化。不同质量比下的PS/PMMA碳化得到的分级多孔碳(HNC-IPNs)具有可控的孔径,相连的孔结构,高的比表面积,优异的电导率和电化学稳定性。除此之外,在有效比表面积(E-SSA)和比电容之间确实存在一个良好的线性关系。其中尤其值得一提的是,样品NHC-IPN-4具有最高的比表面积为1346 m2 g-1,相对较高的有效比表面积为603 F g-1,并且在6 M KOH中0.5 A g-1电流密度下拥有优异的比容量为260 F g-1。与此同时,HNC-IPN-4存在一个优异的循环性能,在2 A g-1电流密度下循环10 000次后的容量几乎无变化且循环20 000次后容量仍可保持为96%。(2)通过一个碳化N-PF/PMMA的互穿聚合物网络的化学过程来制备多尺度孔结构的N掺杂微纳米碳球,其中三聚氰胺(melamine)为氮源,酚醛树脂(PF)为碳源,聚甲基丙烯酸甲酯(PMMA)为造孔剂。通过调控聚合前三聚氰胺和苯酚的质量比是来控制N掺杂微纳米碳球的N含量。这个N掺杂微纳米碳球作为电极材料具有合理的孔径分布、较高的比表面积(559 m2 g-1)和可调控的分布均匀的N原子的N含量。这些独特的特征赋予了这个有前途的电极材料优异的电化学性能。尤其是在三电极体系中的N-CS-IPN-4在6 M KOH中、电流密度为0.5 A g-1时具有最高的比容量为364 F g-1,而且它具有优异的倍率性能(电流密度从0.5A g-1到50 A g-1时容量仍可保持57.7%)和优秀的循环性能(2 A g-1下10 000循环后仍可保持100%)。以上所有结果表明这个N掺杂微纳米碳球是一个有前途的电化学电容器的电极材料,并且它具有简单制备过程优势、多尺度的孔结构、较高的比表面积、容易调控的N掺杂含量和优异的电化学性能。
[Abstract]:In this paper, the latest research progress of supercapacitors is reviewed, especially the preparation and structure regulation of carbon materials for supercapacitors.For double layer capacitors, it is a very important basic scientific problem to systematically study the relationship between the porosity and pore size distribution of carbon materials and the performance of super capacitors.Unfortunately, this problem is basically limited to qualitative explanations or explanations, without strong experimental verification.This is due, on the one hand, to the complexity of the system and, on the other hand, to the uncontrollability of the structure of carbon materials.Therefore, a new method for preparing carbon electrode materials with precise and controllable pore size structure by interpenetrating polymer network carbonization is proposed.The implementation of this research follows the main research route of polymer polymerization controllable carbon material structure controllable high performance super capacitor carbon electrode material as the main research route.By controlling the relative content of two polymers in the interpenetrating polymer network, the morphological structure of the interpenetrating polymer network and the pore structure of carbon materials are regulated.The main contents are as follows: (1) the synthesis of graded porous carbon with controllable pore size and effective specific surface area is proposed by a simple carbonization program and can be used as an electrode material for high performance electrochemical capacitors.This program is based on the carbonation of cross-linked PS and PMMA interpenetrating polymer networks.The graded porous carbon (HNC-IPNs) obtained by carbonization of PS/PMMA with different mass ratios has controllable pore size, connected pore structure, high specific surface area, excellent conductivity and electrochemical stability.In addition, there is a good linear relationship between the effective specific surface area (E-SSA) and the specific capacitance.In particular, it is worth mentioning that the sample NHC-IPN-4 has the highest specific surface area of 1346 m2 g-1 and the relatively high effective surface area of 603 Fg-1, and has an excellent specific capacity of 260F g-1 at the current density of 0.5 A g ~ (-1) in 6 M KOH.At the same time, HNC-IPN-4 has an excellent cycle performance.At current density of 2 A g ~ (-1), the capacity of N-doped micro-carbon spheres with multi-scale pore structure was prepared by the chemical process of an interpenetrating polymer network (IPN) of carbonized N-PF/PMMA, which had almost no change after 10 000 cycles and remained at 96 / 2 after 20 000 cycles.Melamine melamine (melamine) was used as nitrogen source, phenolic resin (PF) as carbon source and polymethyl methacrylate (PMMA) as pore-forming agent.By controlling the mass ratio of melamine to phenol before polymerization, the N content of N-doped microspheres was controlled.The N-doped nano-carbon spheres have a reasonable pore size distribution, a high specific surface area of 559 m ~ 2 路g ~ (-1) and a well-distributed N content.These unique characteristics endow this promising electrode material with excellent electrochemical properties.In particular, N-CS-IPN-4 in three-electrode system is in 6m KOH.When the current density is 0.5 A g ~ (-1), it has the highest specific capacity of 364 F g ~ (-1), and it has excellent rate performance (from 0.5 A g ~ (-1) to 50 A g ~ (-1), the capacity can still maintain 57.7%) and the excellent cycling performance (2 A g ~ (-1)) after 10 000 cycles.All the above results show that the N-doped microsphere is a promising electrode material for electrochemical capacitors, and it has the advantages of simple preparation process, multi-scale pore structure and high specific surface area.Easy to control N doping content and excellent electrochemical performance.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53;TQ127.11
【参考文献】
相关期刊论文 前3条
1 孙天鸣;董利民;王晨;郭文利;王莉;梁彤祥;;孔隙率对炭材料电阻率的影响(英文)[J];新型炭材料;2013年05期
2 A. Villa;M. Schiavoni;P. F. Fulvio;S. M. Mahurin;S. Dai;R. T. Mayes;G. M. Veith;L. Prati;;Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF[J];Journal of Energy Chemistry;2013年02期
3 Thang Ngoc Cong;;Progress in electrical energy storage system:A critical review[J];Progress in Natural Science;2009年03期
,本文编号:1771556
本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/1771556.html