当前位置:主页 > 社科论文 > 法治论文 >

流延法制备固体氧化物燃料电池关键材料研究

发布时间:2018-04-20 07:32

  本文选题:燃料电池 + 流延 ; 参考:《中国科学技术大学》2010年博士论文


【摘要】: 固体氧化物燃料电池(Solid Oxide Fuel Cells, SOFCs)是一种新型的能源利用技术,它具有能量转化效率高、对环境污染小、燃料适应性强等优点,自它诞生就吸引了世界各国和大型企业广泛的关注与研究。SOFC的发电效率在所有燃料电池中是最高,比内燃机的效率高出两倍;同时固体氧化物燃料电池的燃料适用性广泛,H2,CO,CH4等都可以在SOFC中直接使用。经过二十年的快速发展,固体氧化物燃料电池技术已开始走向市场化和产业化。为了降低成本和提高效率,当前固体氧化物燃料电池技术的一个重要课题是使电解质薄膜化以实现电池的中低温操作。而制备低成本、大面积以阳极支撑薄膜化的电解质是实现中低温SOFC的一个重要关键环节。 本论文探索了用流延法制备性能良好的SOFC阳极和致密电解质工艺,并通过喷雾流延以及双层流延的方法制备梯度阳极以满足磁控溅射制备电解质对阳极表面的要求。同时论文还利用双层流延的方法制备复合阳极和电解质技术的探讨研究。论文还对双层流延法制备质子导体电解质和阴极支撑SOFC进行了研究。 论文第一章概述了SOFC的工作原理,各关键材料(电解质、阴极、阳极、连接材料)的性能要求,以及SOFC技术研究、发展的现状和趋势。最后给出了本论文的主要研究目标。 第二章研究了流延法制备固体氧化物燃料电池阳极技术。分析了浆料中各种有机添加剂以及烧结工艺对阳极烧结体性能的影响;并通过研究确定了流延法制备阳极支撑体的工艺参数,所获得的阳极烧结体表面孔隙率控制均匀,没有大于10μm的孔洞,能够满足磁控溅射YSZ电解质薄膜的要求。 第三章研究了阳极微结构的优化和梯度阳极的制备技术。实验表明不同的造孔剂对阳极孔结构有很大影响。使用球形石墨造孔可以得到微结构良好的阳极衬底。同时,论文研究了使用双层流延和喷雾流延的方法制备阳极功能层-阳极支撑体双层结构的梯度阳极技术。利用喷雾流延法可以制备出具有功能层结构,性能良好的梯度阳极。 第四章研究了双层流延法制备电解质-阳极半电池技术,分析YSZ电解质浆料成分对电解质薄膜形貌影响,运用电子扫描显微镜和电池性能分析电解质的致密度和电池结构的好坏。实验表明通过优化电解质浆料和流延工艺,可以得到厚度在10μm左右的致密YSZ电解质薄膜。SOFC单电池的制备技术可以通过两种工艺途径实现,电池阳极由流延法制备,电解质分别由流延和磁控溅射制备,丝网印刷制备阴极。两种方法制备的电解质厚度都能够控制在10μm左右。电池功率密度最大可以达到600mw/cm2以上。 第五章研究了使用双层流延法制备高温陶瓷质子导体电解质薄膜技术,我们采用流延结合原位反应的方法一步制备阳极-电解质半电池,简化了工艺,避开了粉料成相的步骤。制备出了BCZYZ-NiO/BCZYZ半电池,以La0.7Sr0.3FeO3-δ为阴极。电池的性能为:开路电压在550℃,600℃,650℃,和700℃分别为1.03V1.02V, 1.01V,1.00V;功率密度在550℃,600℃,650℃,和700℃的功率密度分别为56 mW cm-2,175 mW cm-2,250 mW cm-2,275 mW cm-2。 第六章研究了双层流延制备阴极支撑SOFC技术。通过双层流延法制备出阴极支撑电解质薄膜生坯。阴极支撑SOFC在不同温度下烧结,在1400℃烧结式可以获得致密SDC电解质,同时又避免了电解质和阴极之间的反应,获得了纯相的阴极支撑体和电解质。通过对单电池的电池性能和电化学性能进行评价。电池的在600℃,650℃,700℃,750℃,800℃开路电压和电池性能分别为0.72V,0.69V,0.65V,0.61V,0.55V和55mW/cm2,105 mW/cm2,164 mW/cm2,233mW/cm2,245mW/cm2。 第七章研究了使用凝胶注模的方法制备管状SOFC技术,通过凝胶注模的方法获得了管径为0.56cm,长度为3cm的单电池。所制备的单电池结构为多孔阳极支撑体和致密电解质,单电池在700℃,750℃,800℃的开路电压达到1 V,0.99V0.96V,最大功率密度为126mW/cm2,154mW/cm2,155mW/cm2。
[Abstract]:Solid oxide fuel cell (Solid Oxide Fuel Cells, SOFCs) is a new energy utilization technology. It has the advantages of high energy conversion efficiency, small environmental pollution and strong fuel adaptability. Since its birth, it attracts all countries and large enterprises in the world to pay more attention to and study the efficiency of.SOFC power generation in all fuel cells. High efficiency is two times higher than that of an internal combustion engine; at the same time, the fuel cell of solid oxide fuel cell is widely used, H2, CO, CH4 and so on can be used directly in SOFC. After twenty years of rapid development, solid oxide fuel cell technology has begun to be marketed and industrialized. In order to reduce the cost and improve the efficiency, the current solid oxide An important issue in fuel cell technology is to film the electrolyte to realize the medium and low temperature operation of the battery, and the preparation of low cost, large area anode supported thin film electrolyte is an important key link for the realization of low temperature SOFC.
In this paper, we have explored the preparation of good SOFC anode and compact electrolyte by the method of casting, and the preparation of the gradient anode by spray casting and double layer casting to meet the requirements of the anode surface for the preparation of electrolytes by magnetron sputtering. We also studied the preparation of proton conducting electrolyte and cathode supported SOFC by double-layer tape casting.
The first chapter of the paper outlines the working principle of SOFC, the performance requirements of key materials (electrolyte, cathode, anode, connecting material), and the current status and trend of the research on SOFC technology. Finally, the main research objectives of this paper are given.
In the second chapter, the anode technology for the preparation of solid oxide fuel cells was studied. The effects of various organic additives in the slurry and the sintering process on the performance of anodic sintered bodies were analyzed. The process parameters of the anode support prepared by the casting process were determined. The surface porosity of the anode sintered body was controlled even. The holes larger than 10 m can meet the requirements of YSZ electrolyte thin films deposited by magnetron sputtering.
The third chapter studies the optimization of the anode microstructures and the preparation of the gradient anode. The experiment shows that different pore forming agents have a great influence on the structure of the anode hole. The microstructures of the anode substrate can be obtained by using the spherical graphite hole. At the same time, the anode functional layer anodic branch is prepared by the method of double-layer casting and spray casting. The gradient anode technology of double layer structure is adopted. The gradient anode with good functional layer structure and good performance can be prepared by spray casting method.
The fourth chapter studies the preparation of electrolyte anodic half battery by double layer casting. The influence of the composition of YSZ electrolyte on the morphology of electrolyte film is analyzed. The density of electrolyte and the structure of the battery are analyzed by the electron scanning microscope and battery performance. The experiment shows that the thickness of the electrolyte and the casting process can be obtained by optimizing the electrolyte size and the casting process. The preparation technology of compact YSZ electrolyte thin film.SOFC single cell at about 10 m can be prepared by two processes. The anode of the battery is prepared by the flow casting method, the electrolyte is prepared by the casting and the screen printing to prepare the cathode. The electrolyte thickness of the two methods can be controlled at about 10 m. The power density of the battery is the largest. It can reach more than 600MW / cm2.
The fifth chapter studies the preparation of high temperature ceramic proton conductor electrolyte membrane by double layer casting. We use the method of casting in situ reaction to prepare the anode electrolyte half battery. The process is simplified and the phase of the powder is avoided. The BCZYZ-NiO / BCZYZ half battery is prepared, and the battery is La0.7Sr0.3FeO3- Delta as the cathode. Performance: open circuit voltage at 550, 600, 650, and 700, respectively 1.03V1.02V, 1.01V, 1.00V; power density at 550, 600, 650, and 700, respectively, is 56 mW cm-2175 mW cm-2250 mW cm-2275 mW cm-2.
The sixth chapter studies the preparation of cathode support SOFC with double layer casting. The cathode support electrolyte film billet is prepared by double layer casting. The cathode support SOFC is sintered at different temperatures. The compact SDC electrolyte can be obtained at 1400 C, and the reaction between the electrolyte and the cathode is avoided. The cathode support of the pure phase is obtained. And electrolytes. By evaluating the performance and electrochemical performance of the single cell battery, the open circuit voltage and battery performance at 600, 650, 700, 750, 800, respectively, are 0.72V, 0.69V, 0.65V, 0.61V, 0.55V and 55mW / cm2105 mW / cm2164 mW / cm2233mW / cm2245mW / cm2245mW.
In the seventh chapter, the tubular SOFC technology is prepared by gel casting. The single cell with a diameter of 0.56cm and a length of 3cm is obtained by gel casting. The single cell structure is porous anode support and compact electrolyte, and the open circuit voltage of the single cell is 1 V, 0.99V0.96V, and maximum power density at 700, 750 and 800. The degree is 126mW / cm2154mW / cm2155mW / cm2.

【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2010
【分类号】:TM911.4

【共引文献】

相关期刊论文 前10条

1 金从进,汪钺强,李泽亚,朱立新;固体电解质脱氧技术的发展[J];宝钢技术;2001年02期

2 王金艳,王永钤,李立本;钇稳定的二氧化锆(YSZ)的结构及离子导电性[J];宝鸡文理学院学报(自然科学版);2001年02期

3 刘建玲,赖琼琳,陈宗璋,何莉萍,杨天足,江名喜;反应条件对水热法制备纳米ATO粉体形貌和电性能的影响[J];材料科学与工程学报;2005年04期

4 任仁;浅谈固体电解质及其应用──兼议如何正确定义电解质[J];大学化学;1995年03期

5 刘建玲,赖琼琳,陈宗璋,何莉萍,杨天足,江名喜;制备工艺对纳米级铟锡氧化物(ITO)形貌和电性能的影响[J];功能材料;2005年04期

6 钟凤兰,郑伟涛,张瑞林;α-AgI的价电子结构分析[J];吉林大学学报(理学版);1993年02期

7 苏f ,谢斌,秦晓英,吴希俊;纳米离子导体Ca_(1-x)La_xF_(2+x)的复阻抗谱和介电常数[J];科学通报;1994年19期

8 杨如玺,唐多强,张涛华,金富林,,陈荣金;三元玻璃的复离子效应[J];天津大学学报;1996年03期

9 朱斌,俞文海;蒙脱石固体电解质的电性能研究[J];无机材料学报;1988年03期

10 丁屹,俞文海;天然丝光沸石对无机盐的复合研究[J];无机材料学报;1991年03期

相关硕士学位论文 前9条

1 杨涛;钽电解电容器用新型聚合物电极材料[D];电子科技大学;2003年

2 刘晓宁;管式固体电解质CO_2气体传感器的研究[D];吉林大学;2004年

3 杨亚杰;有机固体钽电解电容器阴极材料及器件特性研究[D];电子科技大学;2004年

4 王海飞;锂离子电池非晶态电解质研究中的物理问题[D];河北工业大学;2005年

5 王贵;ZrO_2-Y_2O_3-MgO三元系气敏材料的制备和相关性能的研究[D];山东大学;2006年

6 张志娟;掺杂过渡金属氧化物的CeO_2基固体电解质的制备与性能研究[D];贵州大学;2007年

7 张军;固体氧化物燃料电池CuCoNi/SDC阳极的制备及表征[D];内蒙古科技大学;2007年

8 秦利平;溶剂热法制备ITO(铟锡复合氧化物)纳米粉体及其性能研究[D];中南大学;2007年

9 周贤界;固体氧化物燃料电池电解质材料的研究[D];桂林电子科技大学;2007年



本文编号:1776834

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/1776834.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1bd82***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com