当前位置:主页 > 社科论文 > 法治论文 >

共混法制备纳米碳纤维和多孔碳纤维及其吸波性能的研究

发布时间:2018-11-12 15:30
【摘要】: 武器装备的隐身技术已经成为现代战争中提升防御和打击能力的重要手段,而吸波隐身材料是隐身技术的关键之一。当前碳材料是已发展的吸波材料中最有前途,综合性能最好的吸波材料,不仅能够吸波,并且能够增强,可以作为结构吸波材料。因此研制不同形态碳材料,研究其作为吸波剂填充到树脂中制备出的复合材料的吸波性能具有重要的理论意义和应用价值。 本文选取聚丙烯腈(PAN)作为碳前驱体聚合物,以聚甲基丙烯酸甲酯(PMMA)为热分解聚合物,通过将两者共同溶解于二甲基甲酰胺(DMF)中制备了PAN/PMMA共混溶液。采用湿法成型制备了PAN/PMMA共混纤维,经过预氧化和碳化去除PMMA组分,制得了纳米碳纤维和多孔碳纤维。研究了将他们添加至环氧树脂中制备的复合材料的吸波性能。主要工作包括以下几个方面: 采用应变控制动态流变仪分析了PAN/PMMA共混溶液的动态流变性能,发现当PAN分子量不同,即分子量为5万(PAN5)和分子量为8万(PAN8)时,共混溶液的logG′与logω的关系呈现不同的变化,即PAN5/PMMA的logG′在低频率ω范围表现出比较明显的偏离logG′∝2logω的关系,而PAN8/PMMA则基本为线性关系,说明PAN5/PMMA共混溶液呈现明显的非均匀结构。这与对两者共混溶液稳定性观察所得到的结果一致,PAN5/PMMA溶液静置12-24小时发生分层,而PAN8/PMMA共混溶液在相同静置时间下无明显分层发生。 将共混溶液浇铸成膜,利用SEM观察了薄膜的断面形貌。结果表明PAN与PMMA在共混体系中均呈现各自的相态结构,质量百分比高的组分趋向形成连续相。当PAN分子量提高时,分散相尺寸明显减小。 由湿法纺丝成功的制得了质量百分比为3:7和7:3的PAN/PMMA共混纤维。在纤维中,两相分布有所不同,即当PAN分子量为8万时,呈现与共混薄膜相同的相态分布;而当PAN分子量为5万时,PAN趋向于形成连续相的结构。纺丝速度和牵伸倍数能够控制共混纤维中分散相的尺寸。 将PAN/PMMA共混纤维原丝经预氧化和碳化后,所得碳纤维的形貌与原丝中的PAN相的分散状态有关。对PAN为连续相的原丝,对应得到的是多孔碳纤维,孔径为2-5um,当PAN为分散相时,则得到纳米碳纤维,直径为80-150nm。 改变碳化的温度能够控制所得碳材料的石墨化程度。随碳化温度升高,电导率增大,在1000℃时电导率为7.6×10~1 S/cm,1200℃电导率为2.3×10~2 S/cm。 以所得碳材料为吸波剂以2-8wt%的比例与环氧树脂混合,制成标准样片测试了它们在8GHz-12GHz的复介电常数。随吸波剂含量增加,介电常数实部和虚部均随之增大;损耗角正切也随吸波剂含量的增加而增大。由此通过理论模拟计算了不同厚度复合材料的电磁波反射率,并以此指导单层结构复合材料的设计和制备。 对吸波剂含量为2-8wt%的单层结构复合材料的吸波性能采用美国安捷伦公司的HP8722ES型矢量网络分析仪,使用弓形法进行反射率测试的结果表明:一定厚度下(3mm),复合材料在8-12GHz对电磁波的反射率峰值随吸波剂含量的增加而变小;吸波剂含量为8wt%时,反射率峰值对应的频率向低频移动。实际测试结果与理论模拟结果一致。对比多孔碳纤维和纳米碳纤维两种吸波剂,相同含量下,多孔碳纤维复合材料具有更低的反射率,而且反射峰小于-10dB的频率范围更宽。例如:吸波剂含量为8wt%,厚度为3mm的板材,以多孔碳纤维为吸波剂的复合材料最低反射率为-20dB。在8-12GHz均低于-10dB;纳米碳纤维为吸波剂时,最低反射率为-16dB,而低于-10dB的频率范围为2GHz左右。 对吸波机理进行了初步探讨,认为主要是吸波剂对电磁波的吸收和多次反射衰减两种机理为主。以多孔碳纤维作为吸波剂,增加了电磁波反射的路径,有利于电磁波的进一步衰减。 本文的工作丰富了使用碳材料作为吸波剂的复合材料的设计及制备方面的研究内容,其结果具有参考价值。
[Abstract]:The stealth technology of weapon and equipment has become an important means of improving the defense and fighting ability in the modern war, and the wave-absorbing stealth material is one of the key technologies of the stealth technology. The current carbon material is the most promising, comprehensive and best wave-absorbing material in the developed wave-absorbing material, not only can absorb the wave, but also can be enhanced, and can be used as a structural wave-absorbing material. Therefore, different types of carbon materials have been developed, and it is of great theoretical and practical value to study the wave-absorbing property of the composite material prepared by the filling of the wave-absorbing agent into the resin. Polyacrylonitrile (PAN) is used as a carbon precursor polymer, and polymethyl methacrylate (PMMA) is used as the thermal decomposition polymer, and PAN/ PMMA is prepared by co-dissolving the two in the dimethylamino-amine (DMF). PAN/ PMMA blended fiber was prepared by wet method, and the components of PMMA were removed by pre-oxidation and carbonization. hole carbon fiber. study of that composite material to be added to the epoxy resin Wave-absorbing performance. The main work includes the following The dynamic rheological properties of PAN/ PMMA blend solution were analyzed by strain-controlled dynamic rheometer. The molecular weight of PAN/ PMMA blend was found to be different when the molecular weight of PAN was different, that is, the molecular weight was 50,000 (PAN5) and the molecular weight was In this paper, the relationship between the logG ratio of PAN5/ PMMA and log-type is different, that is, the logG ratio of PAN5/ PMMA is significantly different from that of log G in the low-frequency range, while PAN8/ PMMA is a linear relationship, which shows that the PAN5/ PMMA blend solution is in the form of a linear relationship. It is found that the PAN5/ PMMA solution is allowed to stand for 12-24 hours, and the PAN8/ PMMA blend solution is allowed to stand at the same time and the blending solution is cast into a film to form a film, The morphology of the cross-section of the film was observed by SEM. The results showed that both PAN and PMMA exhibited their phase structure and quality in the blending system. the high percentage of the component tends to form a continuous phase. when the pan molecule when the amount is increased, the size of the dispersed phase is obviously reduced, and the success of the wet spinning is as follows: the mass percentage is 3 7 and 7: 3 PAN/ PMMA blend fibers. In the fiber, the two phase distribution is different, that is, when the molecular weight of the PAN is 80,000, the same phase distribution as the blend film is present; and when the PAN molecular weight In the case of 50,000, the PAN tends to form a continuous phase structure. the size of the dispersed phase in the blended fiber can be controlled by the drafting multiple, and the PAN/ PMMA blended fiber raw silk is pre-oxidized and carbonized, the appearance of the obtained carbon fiber is related to the dispersion state of the PAN phase in the raw silk, when the powder is dispersed, the nano carbon fiber is obtained, the diameter is 80-150n, m. the degree of graphitization of the resulting carbon material can be controlled by changing the temperature of the carbonization. the conductivity at 1200 DEG C is from 0 to 1S/ cm, and the conductivity of 1200 DEG C is 2. 3 to 10 to 2 S/ cm. the obtained carbon material is in a ratio of 2-8wt% and a ring by taking the obtained carbon material as a wave-absorbing agent The oxygen resin is mixed, and the standard samples are made to test the complex dielectric constant of them at 8GHz-12GHz. With the increase of the content of the wave-absorbing agent, and the loss tangent is also increased with the increase of the content of the wave-absorbing agent. The electromagnetic wave reflectivity of the composite material with the same thickness is used to guide the design and preparation of the single-layer structure composite material. The performance of the absorption wave of the single-layer structure composite material with the content of 2-8wt% of the wave-absorbing agent is HP8722 of Agilent. The results of the reflectivity test of the ES type vector network analyzer are as follows: under a certain thickness (3mm), the peak of the reflectivity of the composite material at 8-12GHz with respect to the electromagnetic wave the increase of the content of the wave-absorbing agent is small; the wave-absorbing agent contains When the amount is 8wt%, the frequency of the reflectance peak is shifted to the low frequency. The actual test results are consistent with the theoretical simulation results. The porous carbon fiber composite material has a lower reflectivity, and the frequency range of the reflection peak is less than -10dB. For example, the wave-absorbing agent content is 8w. the minimum reflectivity of the composite material with the porous carbon fiber as the wave absorbing agent is -20dB, the minimum reflectivity of the composite material with the porous carbon fiber as the wave absorbing agent is -20dB, and the nano-carbon fiber When the dimension is a wave-absorbing agent, the minimum reflectivity is -16dB, while the frequency range below -10dB is about 2GHz. The mechanism of the wave absorption is discussed in this paper. It is considered that the absorption of the electromagnetic wave by the wave-absorbing agent is mainly caused by the absorption of the electromagnetic wave and the decay of many times. Based on the two mechanisms, the porous carbon fiber is used as the wave absorbing agent, the path of the electromagnetic wave reflection is increased, and the further attenuation of the electromagnetic wave is facilitated.
【学位授予单位】:东华大学
【学位级别】:硕士
【学位授予年份】:2010
【分类号】:TQ340.7

【相似文献】

相关期刊论文 前10条

1 ;一种基于纳米碳纤维的贵金属电催化剂及其制备方法[J];高科技纤维与应用;2009年04期

2 ;金属纤维-纳米碳纤维-碳气凝胶复合材料制备方法及用途[J];高科技纤维与应用;2010年06期

3 刘春华;戴超林;游奎一;刘平乐;王良芥;罗和安;;泡沫镍及负载型镍催化剂制备纳米碳纤维层的研究[J];化学研究与应用;2008年11期

4 王强华;;纳米碳纤维用于低成本工程聚合物[J];玻璃钢;2009年01期

5 ;东京大学开发出酚醛纳米碳纤维非织造材料[J];有机硅氟资讯;2009年Z1期

6 ;负载型钛硅分子筛/纳米碳纤维复合催化剂及制备和应用[J];高科技纤维与应用;2009年04期

7 张旺玺;;电纺丝制备聚丙烯腈基纳米碳纤维[J];纺织科学研究;2010年03期

8 ;东京大学开发出酚醛纳米碳纤维非织造材料[J];纳米科技;2009年05期

9 梅启林;王福玲;黄志雄;王继辉;魏涛;;纳米碳纤维复合材料的制备及其力学性能研究[J];武汉理工大学学报;2007年08期

10 张旺玺;;静电纺丝制备聚丙烯腈纳米碳纤维[J];合成纤维工业;2007年05期

相关会议论文 前10条

1 李艳强;贲腾;裘式纶;;碳化多孔芳香骨架用于吸收二氧化碳[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年

2 张旺玺;;电纺丝制备聚丙烯腈基纳米碳纤维[A];雪莲杯第10届功能性纺织品及纳米技术应用研讨会论文集[C];2010年

3 李启汉;黎海超;陈水挟;;一种高比表面酚醛基多孔碳材料的制备[A];第七届中国功能材料及其应用学术会议论文集(第2分册)[C];2010年

4 方克明;胡晓军;陈锡花;;纳米碳纤维微观结构的高分辨电镜研究[A];纳米材料和技术应用进展——全国第二届纳米材料和技术应用会议论文集(上卷)[C];2001年

5 郑俊生;张新胜;隋志军;李平;袁渭康;;纳米碳纤维电极电化学性能初步研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

6 王艳香;谭寿洪;江东亮;迟伟光;;有机物裂解制备反应烧结碳化硅的研究[A];2002年材料科学与工程新进展(下)——2002年中国材料研讨会论文集[C];2002年

7 冯玉;敖日格勒;周雪松;;电纺法制备木质素纳米碳纤维[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年

8 戴超林;刘平乐;王良芥;罗和安;;金属泡沫镍及负载型镍催化剂制备纳米碳纤维的研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年

9 李光;潘纬;金俊弘;杨胜林;江建明;;含碳前驱体聚合物与热解聚合物的共混纺丝法制备纳米碳纤维[A];2007年全国高分子学术论文报告会论文摘要集(上册)[C];2007年

10 于泓;隋志军;李平;周静红;周兴贵;袁渭康;;不同微观结构纳米碳纤维负载铑催化剂的性能研究[A];第十一届全国青年催化学术会议论文集(上)[C];2007年

相关重要报纸文章 前9条

1 刘海英;英利用多孔碳开发新型空气电池[N];科技日报;2009年

2 实习生毛锦伟记者徐敏褚宁;上海高校构建国际化科研大舞台[N];解放日报;2003年

3 李永丹;创造持续动力开发全新材料[N];中国化工报;2002年

4 毛天球;组织工程学研究概况[N];中国医药报;2000年

5 星武;创造辉煌 为中国人争光[N];上海科技报;2002年

6 程书权;组织工程学研究与应用现状[N];中国医药报;2001年

7 王小龙;加用纳米技术研制新型硫锂电池[N];科技日报;2009年

8 记者 尤志卉;新式电动车开锁靠指纹[N];苏州日报;2010年

9 记者 王小龙;“豆荚”复合材料可延长锂离子电池使用寿命[N];科技日报;2011年

相关博士学位论文 前10条

1 张勇;纳米碳纤维的批量制备技术与装置研究[D];湖南大学;2010年

2 曹尧杰;纳米碳纤维规整结构催化剂的制备及其流体力学性能研究[D];华东理工大学;2011年

3 王安苗;多孔碳材料的制备及在储氢、储电和催化中的应用[D];华东理工大学;2011年

4 鲍卫仁;煤基原料等离子体转化合成的基础研究[D];太原理工大学;2010年

5 梅启林;纳米碳纤维的表面处理及其聚合物复合材料的性能研究[D];武汉理工大学;2008年

6 张乾;具有对称结构的螺旋碳纤维和多枝状碳纤维的制备及生长机理研究[D];青岛科技大学;2009年

7 张锋;碳基及锡基锂离子电池负极材料的制备及性能研究[D];吉林大学;2009年

8 于立岩;一维碳纳米材料的可控制备及其生长机理的研究[D];青岛科技大学;2009年

9 谢广文;纳米碳纤维表面化学镀层及模板法纳微结构的制备与表征[D];青岛科技大学;2007年

10 唐佩福;多孔碳酸化羟基磷灰石骨水泥的实验研究[D];中国人民解放军军医进修学院;2002年

相关硕士学位论文 前10条

1 张亮;共混法制备纳米碳纤维和多孔碳纤维及其吸波性能的研究[D];东华大学;2010年

2 魏一忠;细菌纤维素基纳米碳纤维的制备及其储锂储氢性能研究[D];天津大学;2010年

3 孙锋杰;静电纺丝法制备聚丙烯腈基纳米碳纤维的研究[D];北京化工大学;2010年

4 王文娟;新型多孔碳材料的制备及其电化学性能研究[D];华东师范大学;2010年

5 陈观通;基板法铜粒子催化合成纳米碳纤维阵列的研究[D];青岛科技大学;2010年

6 夏玉明;分级多孔碳及其复合物结构调控与电化学性能[D];华东理工大学;2012年

7 胡传奇;多孔碳坯的室温冷凝浇注成型工艺及反应烧结体性能研究[D];中国建筑材料科学研究总院;2011年

8 董红周;高压直流电缆用纳米碳纤维/EVA复合半导电材料电性能研究[D];青岛科技大学;2010年

9 冯玉;静电纺丝法制备木质素纳米碳纤维的研究[D];华南理工大学;2010年

10 王莎莎;块状纳米碳纤维及其C/C复合材料的制备研究[D];华东理工大学;2011年



本文编号:2327512

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/2327512.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5aa14***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com