当前位置:主页 > 社科论文 > 法治论文 >

表面引发自由基聚合法制备润湿性可控的聚离子液体刷

发布时间:2019-04-01 06:30
【摘要】: 表面润湿性是固体表面的重要特征之一,对自然界中动、植物的种种生命活动,人类的日常生活及工、农业生产具有重要的影响。众所周知,表面润湿性由固体表面自由能和表面粗糙度的大小来决定。目前,关于超疏水性材料的构筑已经有很多研究,方法已渐成熟,但具有动态可控性质的表面设计研究才刚刚起步,而表面润湿性动态可控的可逆超疏水/超亲水性材料由于可以对外部刺激做出精确和可预测的改变和调控,在刺激响应器件、自清洁表面、液体微球操纵器、变焦镜头等方面具有巨大的应用潜能,所以,寻求操作简便,易于工业推广,膜稳定性高,结构和粗糙度可控,可逆性好的超疏水/超亲水性可逆转换材料仍然是表面材料科学中最有挑战性的课题。 控制表面润湿性的方法有很多,如机械表面形貌变化法,它通过控制表面粗糙度来实现润湿性的调控,而通过改变表面自由能来调控材料的润湿性能则主要是通过在材料表面涂覆或接枝有机聚合物层,通过控制有机聚合物层的构成来实现润湿性的调控。表面接枝法通过在基底表面形成以牢固的化学键相结合的端接枝聚合物层而备受关注。其中表面引发自由基聚合反应能够在固体基底表面形成高度取向、结合牢固、高密度的聚合物层,薄膜层分布均匀、便于纳微图形化和加工成型,并且薄膜厚度可在分子水平上方便地调控,从而大大拓宽了聚合物的应用领域。 聚离子液体由于其结构特点,成为实现表面润湿性可逆调节的首选结构单元之一,利用表面引发聚合反应将功能离子液体单元引入到材料表面,然后通过选择适当的对离子来调节材料表面的润湿性变化。 本文利用表面引发自由基聚合反应,在不同的材料基底表面引入不同的聚离子液体刷,再通过对离子转换实现固体表面的亲疏水转换。这些新型的润湿性可控的功能材料鲜有报道,具有广阔的应用前景。 首先合成了一种新的离子液单体烯丙基三苯基六氟磷酸擕,根据文献合成出离子液单体1-(4-乙烯基苄基-)-3-丁基咪唑六氟磷酸盐,并用核磁共振波谱等技术手段进行了表征。 以1-(4-乙烯基苄基))-3-丁基咪唑六氟磷酸盐为单体,2-溴-2-甲基-N-(3-(三甲氧基硅基)丙基)丙酰胺为表面引发剂,以SmCl3为催化剂,乳酸为配体,AIBN为自由基引发剂,DMF为溶剂,利用RATRP法在铜基底表面接枝了聚离子液体刷;以烯丙基三苯基六氟磷酸擕为单体,2-溴-2-甲基-N-(3-(三乙氧基硅基)丙基)丙酰胺(BTPAm)为表面引发剂,TEMPO为氮氧自由基引发剂,环己酮为溶剂,,利用表面引发NMP法在硅基底表面接枝了聚离子液体刷;以1-(4-乙烯基苄基))-3-丁基咪唑六氟磷酸盐为单体,2-溴-2-甲基-N-(3-(三乙氧基硅基)丙基)丙酰胺为表面引发剂,TEMPO为氮氧自由基引发剂,二甲苯为溶剂,利用NMP法在硅基底表面接枝了聚离子液体刷。利用X-射线光电子能谱(XPS)、接触角仪、椭圆偏光仪、原子力显微镜(AFM)、核磁共振波谱(1H和13C NMR)和凝胶渗透色谱(GPC)分别对它们进行了表征。动力学研究表明,无论利用哪种方法,聚合物刷的厚度均随聚合时间的增长呈线性关系,由此证明了聚离子液体刷在材料表面的增长是可控的活性聚合。此外,通过简单的对阴离子交换,成功实现了材料表面亲疏水性的可逆转换。
[Abstract]:The surface wettability is one of the important characteristics of the solid surface, which has an important influence on the life activities of the moving and the plants in nature, the daily life of the human beings and the work and the agricultural production. It is well known that the surface wettability is determined by the free energy of the solid surface and the size of the surface roughness. At present, there are many researches on the construction of super-hydrophobic materials, and the method has become mature, but the surface design study with dynamic and controllable properties has just started. The reversible super-hydrophobic/ super-hydrophilic material with controllable surface wettability can make accurate and predictable changes and control to external stimuli, and has great application potential in the aspects of stimulation response device, self-cleaning surface, liquid microsphere manipulator, zoom lens and the like, so, The super-hydrophobic/ super-hydrophilic reversible conversion material has the advantages of simple and convenient operation, easy industrial popularization, high film stability, controllable structure and roughness, and good reversibility, and the super-hydrophobic/ super-hydrophilic reversible conversion material is still the most challenging topic in the surface material science. The method for controlling the wettability of the surface has many methods, such as the mechanical surface morphology change method, which realizes the control of the wettability by controlling the surface roughness, and the wettability of the material can be controlled by changing the surface free energy, mainly by coating or grafting the organic poly on the surface of the material. a composition layer for realizing the wettability by controlling the structure of the organic polymer layer The surface grafting process is prepared by forming an end-grafted polymer layer in combination with a strong chemical bond on the surface of the substrate The surface-initiated free-radical polymerization reaction can form a high-orientation on the surface of the solid substrate, and the high-density and high-density polymer layer is combined, the distribution of the thin-film layer is uniform, the micro-patterning and the processing and forming are facilitated, and the film thickness can be conveniently carried out at the molecular level. The regulation and control of the polymer greatly broadens the content of the polymer, in that field, the polyionic liquid is one of the preferred structural unit for realizing the reversible regulation of the surface wettability due to the structure characteristic of the polyionic liquid, The surface wettability changes. In this paper, the surface-induced free radical polymerization is used to introduce different polyionic liquid brushes on the surface of different materials. These new types of wettability-controllable functional materials have little to do with the water-to-water conversion of the solid surface. The invention provides a new ionic liquid monomer allyl triphenyl hexafluorophosphate, and the ionic liquid monomer 1-(4-vinyl-base-) -3-butyl detomorhexis phosphate is synthesized according to the literature, and the new ionic liquid monomer allyl triphenyl hexafluorophosphate is synthesized according to the literature, A 1-(4-vinyl-based) -3-Budetomycin hexafluorophosphate as a monomer,2-bromo-2-methyl-N-(3-(trimethoxysilyl) propyl) propylamine as a surface initiator is used as a catalyst, and lactic acid is a ligand. AIBN is a free radical initiator, DMF is a solvent, a polyionic liquid brush is grafted on the surface of the copper substrate by a RATRP method, the allyl triphenyl hexafluorophosphate is a monomer, and 2-bromo-2-methyl-N-(3-(triethoxysilyl) propyl) propylamine (BTPAm) is a surface initiator, and the TE The MPO is a nitrogen-oxygen free-radical initiator, cyclohexanone is a solvent, and a polyionic liquid brush is grafted on the surface of the silicon substrate by using a surface-induced NMP method, and 1-(4-vinyl-base)) -3-butyl detomycin hexafluorophosphate is a monomer, and 2-bromo-2-methyl-N-(3-(3-( triethoxysilyl) propyl) propylamine is a surface initiator, TEMPO is a nitrogen-oxygen free-radical initiator, xylene is a solvent, The ionic liquid brush was grafted on the surface of the silicon substrate by NMP. The X-ray photoelectron spectroscopy (XPS), the contact angle instrument, the ellipsometry, the atomic force microscope (AFM), the nuclear magnetic resonance spectrum (1H and 13C NMR) and the gel were used. The dynamic studies show that the thickness of the polymer brush has a linear relationship with the growth of the polymerization time, and thus the polyion is proved. the growth of the liquid brush on the surface of the material is a controlled, active polymerization. in addition, the anion exchange is achieved by a simple pair of anion exchange,
【学位授予单位】:西北师范大学
【学位级别】:硕士
【学位授予年份】:2010
【分类号】:O631.5

【参考文献】

相关期刊论文 前10条

1 ;Preparation of End Grafted Polyacrylonitrile Brushes through Surface Confined Radical Chain Transfer Reaction[J];Chinese Chemical Letters;2003年01期

2 熊玉兵,樊玲,沈之荃;AIBN/SmCl_3/乳酸体系催化甲基丙烯酸甲酯的反向原子转移自由基聚合[J];高等学校化学学报;2005年11期

3 周峰,李斌,陈淼,刘维民;活性端基聚苯乙烯表面修饰膜的制备与摩擦学性能[J];高分子学报;2002年05期

4 张兆斌,应圣康;原子转移自由基聚合及可控自由基聚合[J];高分子通报;1999年03期

5 王婵婵;杨凤林;张捍民;;壳聚糖/无纺布复合膜的制备及其耐污染性能研究[J];高校化学工程学报;2009年05期

6 江雷;从自然到仿生的超疏水纳米界面材料[J];化工进展;2003年12期

7 王均凤,张锁江,陈慧萍,李闲,张密林;离子液体的性质及其在催化反应中的应用[J];过程工程学报;2003年02期

8 邵媛;邓宇;;离子液体的应用研究进展[J];精细化工中间体;2005年06期

9 周峰,刘维民;无机物表面引发聚合反应制备端接枝聚合物膜[J];化学进展;2002年02期

10 倪刚,杨武,何晓燕,薄丽丽,吕维莲;表面引发聚合反应研究进展[J];化学进展;2005年06期

相关硕士学位论文 前1条

1 金丽丽;表面引发原子转移自由基聚合反应制备有机/无机复合材料[D];西北师范大学;2009年



本文编号:2451282

资料下载
论文发表

本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/2451282.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户900a3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com