固相法制备金属氧化物催化材料及其消除CO、NO性能研究
[Abstract]:In recent years, with the rapid development of the economy and society, the exhaustion of resources and the pollution of the environment have seriously restricted the further development of the economy, and even threatened the survival and development of the human, and the new preparation method of the catalyst has become one of the powerful tools to solve the problem. The usual preparation of the catalyst is carried out in the aqueous phase, which inevitably leads to problems of water environmental pollution and the like. Correspondingly, when the preparation of the catalyst is carried out under the anhydrous condition, the water pollution can be effectively avoided. In this paper, we selected two representative catalyst configurations (supported catalyst and composite oxide catalyst) as the research object, and the advantages of the solid-phase method in the preparation of high-performance catalysts were investigated in detail. At the same time, the influence of the preparation parameters on the catalyst was investigated in combination with a variety of physical and chemical characterization methods, and the intermediate process of the catalyst preparation was analyzed, and the relationship between the structure and the performance of the catalyst was investigated. The main contents of the study are as follows:1. The metal oxide (NiO, Co3O4, CeO2) nano-particle catalyst loaded in the SBA-15 channel with high content and single dispersion is prepared by the solid-phase method with the simple nitrate as the metal oxide precursor and the SBA-15 as the carrier. The N2 adsorption and transmission electron microscope show that the nano-particles are filled in the mesoporous channel. The monodispersity of the nanoparticles was confirmed by X-ray diffraction and transmission electron microscopy. The effect of different nickel oxide content, different firing temperature, different precursor and pore channel on the preparation results was further investigated with nickel as the research object, and the effect of the pore-limited region on the decomposition and aggregation of the object species was also studied. The results show that the size of NiO particles has not changed significantly with the increase of content and temperature; the type of the precursor and the existence of the mesopore have great influence on the preparation result, and the nickel acetate is used as the nickel source, so that the nickel salt can not enter the mesoporous channel, and the large-particle NiO outside the pore canal can only be obtained; The limited domain effect of the pore canal makes the decomposition of the metal salt and the rapid growth of the nano-particles to be obviously inhibited. In combination with the results of the preparation of the intermediate process, we speculate that the fluidity of the molten salt formed during the heating process of the nickel nitrate precursor is the premise of ensuring that the nickel species enters the SBA-15 pore canal, and the viscosity property of the molten salt ensures the monodispersity of the particles. In the end, we investigated the activity of the nickel catalyst in the hydrodechlorination of the chlorobenzene and the hydrogen production from the decomposition of NH3, and found that the catalyst obtained by the solid-phase method has better activity relative to the conventional method (impregnation method). the results show that the solid-phase method is a potential application for pollutant treatment and clean energy production.2, the copper nitrate is a copper salt precursor, the SBA-15 is a carrier, a high content (20 wt%) copper species is bonded to the SBA-15 surface for the first time by using a solid phase method, And the crystal phase cuo of the large particles is mainly obtained by using the conventional impregnation method. The samples were further characterized by X-ray diffraction, H2 program temperature-raising and reduction, in-situ IR, etc., and the copper species were bonded to SBA-15 in the form of isolated copper dimer in the form of co-condensation and dehydration with the hydroxyl group of SBA-15. The results show that the specific surface area of the carrier is not the key to the successful bonding of the copper species, and the capillary adsorption of the unique pore structure of the SBA-15 is very important to the dispersion of the copper species. Supported copper-based catalysts were prepared by solid-phase method, and the performance of CO-PROX in the selective oxidation of hydrogen-rich CO was also investigated. We have found that the size of the CeO2 particles and the interaction of the copper particles significantly affect the activity of the reaction. Due to the fact that the solid phase method can reduce the size of the Ce02, it is also possible to enhance the interaction between the copper particles as compared to the conventional impregnation method, thus exhibiting excellent CO-PROX activity. In addition, by compare that two different support of the amorphous silica gel and the SBA-15, it is found that the amorphous silica gel has a higher activity, which may be caused by a certain limit to the diffusion of the reactant molecules in the pore canal. The performance of its in NO + CO reaction was also investigated. Compared with the conventional impregnation method and the coprecipitation method, the solid-phase method has the advantages of: (1) the solid-phase method can avoid the loss of the active species; and (2) the solid-phase method is favorable for obtaining the high-specific surface area catalyst, This may be associated with a gas such as NOx released from the decomposition of the metal salt during the preparation process, which results in a fine pore structure for the catalyst; and (3) the solid phase preparation process is beneficial to the enhancement of the effect of nickel and sulfur. These reinforcing nickel alloys are mainly represented by NiO which is highly dispersed on the surface of Ce02 and Ni2 + incorporated in the Ce02 lattice. Due to the nature of these structures and species, the preparation of the catalyst in the solid phase process exhibits excellent activity in the NO + CO reaction. It was found that the NO + CO activity of the catalyst was the best when the molar ratio of nickel to nickel was 1:9. Too much or too little nickel is detrimental to the catalytic activity.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:X505;O643.36
【相似文献】
相关期刊论文 前10条
1 龚惠娟,陈泽智;车用尾气催化剂催化特性的模拟[J];计算机与应用化学;2000年05期
2 陈泽智,陶建幸,龚惠娟;车用尾气催化剂工作性能的模拟与分析方法[J];计算机与应用化学;2001年Z1期
3 王嵩;毛东森;吴贵升;郭晓明;卢冠忠;;铜/氧化锆催化剂的制备及应用研究进展[J];化工进展;2008年06期
4 赵海;张德祥;高晋生;;稀土掺杂铁锰脱硝催化剂的制备及其性能研究[J];煤炭转化;2011年04期
5 ;轻油制氢烧结型催化剂降低煅烧温度和催化剂中镍含量初步研究[J];胜利石油化工;1976年03期
6 秦永宁;烃类水蒸汽转化制氢催化剂初步设计[J];天津大学学报;1978年02期
7 南化公司研究院二室钒催化剂组;美国进口硫酸钒催化剂剖析报告[J];硫酸工业;1979年02期
8 刘金香;高秀英;;热重法用于天然气蒸汽转化催化剂的筛选和还原条件的考察[J];石油化工;1980年07期
9 杨孔章;刘传朴;;氢气脉冲色谱法测定催化剂中镍表面积[J];石油化工;1980年10期
10 李树本;;多组份钼酸盐催化剂丙烯氨氧化性能的研究[J];石油化工;1981年07期
相关会议论文 前10条
1 李文鹏;徐显明;郁向民;李方伟;裴皓天;李影辉;;天然气二段蒸汽转化催化剂的分析表征[A];第四届全国工业催化技术及应用年会论文集[C];2007年
2 汪国军;吴粮华;陈欣;谢在库;;丙烯腈新型催化剂研制[A];第十三届全国催化学术会议论文集[C];2006年
3 郑俊娴;王远洋;;相催化剂微粒聚集分维特征的模拟研究[A];第七届全国催化剂制备科学与技术研讨会论文集[C];2009年
4 周晓奇;李速延;;变换催化剂的现状及其发展趋势[A];第2届全国工业催化技术及应用年会论文集[C];2005年
5 张鸿喜;吴君璧;宋美婷;李海涛;亢丽娜;赵永祥;;水热条件下Ni/La_2O_3-SiO_2-Al_2O_3催化剂结构演变[A];第十届全国工业催化技术及应用年会论文集[C];2013年
6 欧阳平;姚金华;陈国需;李华峰;;摩擦催化反应中机械摩擦作用对催化剂的影响[A];第四届全国工业催化技术及应用年会论文集[C];2007年
7 刘智;黄海兵;张新莉;甄洪鹏;义建军;黄启谷;杨万泰;张明革;高克京;李红明;;高活性TiCl_4/SiO_2/AlEt_3催化剂淤浆聚合制备宽峰分布聚乙烯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 杨述芳;陶若虹;徐树元;任宏俊;;催化剂的壁厚设计与寿命管理[A];2012中国环境科学学会学术年会论文集(第三卷)[C];2012年
9 韩哲;张冬菊;李国平;武剑;刘成卜;;Ziegler-Natta催化剂下α-烯烃聚合反应中若干问题的理论研究[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
10 洪景萍;;山梨醇和钌助剂添加对二氧化硅担载钴基催化剂结构及其费托合成性能影响的原位表征研究[A];中国化学会第28届学术年会第1分会场摘要集[C];2012年
相关重要报纸文章 前3条
1 覃泽文;催化剂助氢气轻松储存[N];中国能源报;2009年
2 仇国贤;原位晶化催化剂降物耗能耗[N];中国化工报;2009年
3 特约记者 张晓君 萧兵;科技创新降低能耗提高效率[N];中国石油报;2011年
相关博士学位论文 前10条
1 周功兵;液相苯部分加氢制环己烯新型钌催化剂的研究[D];复旦大学;2014年
2 刘洋;基于POC和SCR技术降低车用柴油机颗粒物和氮氧化物排放的研究[D];山东大学;2015年
3 伍士国;基于CTAB辅助制备的FeMnTiO_x催化剂NH_3-SCR脱硝的性能研究[D];南京大学;2015年
4 曹朋;丁腈橡胶溶液加氢催化剂的制备及活性研究[D];北京化工大学;2015年
5 王芬芬;纤维素催化转化制备乳酸[D];陕西师范大学;2015年
6 王秋麟;钛基催化剂催化降解氯苯和二VA英的基础研究[D];浙江大学;2015年
7 郭跃萍;电沉积制备非晶态Co基薄膜催化剂硼氢化钠制氢研究[D];兰州大学;2013年
8 汤常金;固相法制备金属氧化物催化材料及其消除CO、NO性能研究[D];南京大学;2011年
9 黄一波;含氟硫脲有机催化剂的制备及应用[D];南京理工大学;2012年
10 郑晓玲;活性炭为载体钌催化剂的制备及氨合成催化性能的研究[D];福州大学;2002年
相关硕士学位论文 前10条
1 段志敏;甲烷二氧化碳重整反应镍基和钴基催化剂的制备及性能研究[D];内蒙古大学;2015年
2 马茹瑰;CO_2加氢合成甲醇Cu-ZnO-ZrO_2催化剂的制备与性能研究[D];昆明理工大学;2015年
3 何贞泉;Cu/γ-Al_2O_3催化剂对HCN的催化水解性能研究[D];昆明理工大学;2015年
4 陈新怡;超临界甲醇中纤维素半纤维素催化转移加氢液化研究[D];昆明理工大学;2015年
5 陈雅;M41S及SBA-15介孔分子筛固载硅钨酸催化剂的制备表征及催化性能研究[D];郑州大学;2015年
6 李博;过渡金属复合物催化剂催化二氧化碳加氢反应的研究[D];兰州大学;2015年
7 邢婉贞;硅烷偶联剂改性硅胶催化双氧水的Baeyer-Villiger反应研究[D];南京理工大学;2015年
8 郭瑜;负载型铁基纳米金催化剂的制备及其构效关系研究[D];山东大学;2015年
9 张信莉;Mn改性γ-Fe_2O_3催化剂低温SCR脱硝性能研究[D];山东大学;2015年
10 孙帅帅;CuO/CeO_2的浸渍法制备及其催化CO氧化性能[D];上海应用技术学院;2015年
,本文编号:2482095
本文链接:https://www.wllwen.com/shekelunwen/minzhuminquanlunwen/2482095.html