钕离子掺杂的倍半氧化物陶瓷激光性能的研究
发布时间:2018-01-02 11:23
本文关键词:钕离子掺杂的倍半氧化物陶瓷激光性能的研究 出处:《深圳大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 钕离子 放电等离子体法 Md:Lu_2O_3陶瓷 损耗
【摘要】:本文主要是针对放电等离子体法生长的掺钕三氧化二镥激光陶瓷(Nd:Lu_2O_3 Ceramics)的激光性能开展研究。钕属于稀土元素,钕离子丰富的能级结构决定了其在1微米波段附近能够产生不同波长的跃迁;另一方面,倍半氧化物陶瓷因为具有热导率高,密度大,带隙宽等优点,成为近年来固态激光介质研究的热点,Nd~(3+)掺杂的倍半氧化物陶瓷激光具有独特的优势,可望为固态激光的发展以及性能更加优良的激光增益材料的探索提供路径。激光陶瓷生长方法多样,放电等离子体法生长激光陶瓷具有结构均匀、致密等优点。测试放电等离子体法生长的Nd:Lu_2O_3陶瓷的荧光谱线,结果显示在lum附近有很强的发射谱线,其中最强的谱线在1078nm和1080nm附近;测量了Nd:Lu_2O_3陶瓷的吸收谱线,其中在807nm附近处有很强的吸收谱,为选择合适的泵浦源提供依据。在实验中,对比退火与未退火、镀膜与未镀膜Nd:Lu_2O_3陶瓷激光性能,结果表明退火并且镀膜的陶瓷激光输出性能(输出功率、斜效率等)要明显优于未退火与未镀膜的陶瓷。最后设计了Nd:Lu_2O_3陶瓷V腔激光输出实验来验证高效激光输出,在~4F_(3/2)到~4I_(11/2)跃迁时,获得1076.7nm和1080.8nm双波长,获得最大输出功率1.25W,对应的斜效率为38%,在~4F_(3/2)到~4I_(13/2)跃迁时,1357.9nm波长得到振荡,获得最大输出功率为200mW.测量了在输出镜透过率分别为T=0.8%,1.6%,3.5%,5%,9%时的腔内往返损耗;在泵浦功率为3W的情况下,确定输出镜最优的透过率。我们实验所取得的结果,是目前为止已经报道的Nd:Lu_2O_3增益介质激光性能中最好的结果之一,尤其在斜率效率方面,有了成倍的提高。基于振荡阈值法,我们还对钕玻璃棒的动态损耗进行了测量。钕玻璃棒作为一种激光增益介质,是当前用于激光核聚变驱动器中唯一一种类型的增益介质。基于项目任务,我们对两种类型的钕玻璃棒的动态损耗开展了测试研究。这里的损耗是指泵浦条件下的损耗,不同于没有泵浦时的静态损耗。经过对比测量发现,所测试的两种钕玻璃棒的损耗在0.001-0.004范围,鉴于样品的数量较少,我们的测试结果还只能作为初步的依据。
[Abstract]:In this paper, the laser properties of ND: Lu2O3 Ceramicsgrown by discharge plasma method are studied. Neodymium is a rare earth element. The rich energy level structure of neodymium ion determines the transition of different wavelengths in the region of 1 micron band. On the other hand, because of the advantages of high thermal conductivity, high density and wide band gap, the double semi-oxide ceramics have become a hot spot in the research of solid-state laser medium in recent years. Nd~(3) doped double oxide ceramic laser has unique advantages. It is expected to provide a path for the development of solid-state laser and the exploration of laser gain materials with better performance. Laser ceramics have a variety of growth methods and the structure of laser ceramics grown by discharge plasma method is uniform. The fluorescence spectra of Nd:Lu_2O_3 ceramics grown by discharge plasma method were measured and the results showed that there were strong emission lines near lum. The strongest lines are around 1078nm and 1080nm. The absorption lines of Nd:Lu_2O_3 ceramics have been measured. There are strong absorption spectra near 807nm, which provides the basis for selecting the appropriate pump source. In the experiment, the contrast annealing and unannealed. The laser performance of coated and uncoated Nd:Lu_2O_3 ceramics shows that the laser output performance (output power) of annealed and coated ceramics is obtained. The oblique efficiency is obviously superior to that of the unannealed and uncoated ceramics. Finally, the V-cavity laser output experiment of Nd:Lu_2O_3 ceramics is designed to verify the high efficiency laser output. At the time of transition from 4 FV / 2 to 11 / 2), double wavelengths of 1076.7nm and 1080.8nm were obtained, and the maximum output power was 1.25W. The corresponding oblique efficiency is 38. The wavelength of 1357.9 nm is oscillated at 1357.9 nm during the transition from 4F / 2 to 13 / 2). The maximum output power is 200 MW. The internal and external loss of the output mirror is measured when the transmittance of the output mirror is 0.8 and 1.6 and 3.5 and 5 respectively. When the pump power is 3 W, the optimal transmittance of the output mirror is determined. It is one of the best results of Nd:Lu_2O_3 gain dielectric laser reported so far, especially the slope efficiency has been improved exponentially, based on the oscillation threshold method. The dynamic loss of neodymium glass rod is also measured. As a kind of laser gain medium, neodymium glass rod is the only type of gain medium currently used in laser fusion driver. The dynamic loss of two types of neodymium and glass rod is tested and studied. The loss is different from the static loss under pump condition, and it is found by comparison and measurement. The loss of the two kinds of neodymium and glass rods is in the range of 0.001-0.004. Our results can only be used as a preliminary basis in view of the small number of samples.
【学位授予单位】:深圳大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TN24
【参考文献】
相关期刊论文 前8条
1 陈晶;杨付;高宪娥;周志鹏;;透明激光陶瓷的发展现状及未来趋势分析[J];舰船防化;2010年05期
2 张久兴;张忻;岳明;周美玲;左铁镛;;放电等离子烧结技术与新材料研究[J];功能材料信息;2004年03期
3 闻雷,孙旭东,马伟民;共沉淀法制备YAG超细粉及透明陶瓷[J];功能材料;2004年01期
4 闻雷,孙旭东,马伟民;固相反应法制备YAG透明陶瓷[J];硅酸盐学报;2003年09期
5 李江,潘裕柏,张俊计,黄莉萍,郭景坤;共沉淀法制备钇铝石榴石(YAG)纳米粉体[J];硅酸盐学报;2003年05期
6 张东涛,张久兴,周美玲;块状纳米材料研究进展[J];金属功能材料;2002年04期
7 谭宝林;受控核聚变两大途径的对比与结合[J];物理;2002年03期
8 张杰;浅谈惯性约束核聚变[J];物理;1999年03期
,本文编号:1368968
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1368968.html