贵州省大蹄蝠种群扩散及历史动态研究

发布时间:2018-04-22 04:17

  本文选题:大蹄蝠 + D-loop区 ; 参考:《贵州师范大学》2017年硕士论文


【摘要】:大蹄蝠(Hipposideros armiger)广泛分于贵州省境内。关于大蹄蝠(H.armiger)的分子系统地理学的研究已有报道,本文使用线粒体DNA控制区(D-loop区)作为分子标记,针对这一物种进行了省级区域范围内的遗传多样性、种群遗传结构、历史动态等方面的研究,阐述了贵州省大蹄蝠的种群扩散中心,初步探讨了小尺度范围内大蹄蝠(H.armiger)是否存在偏性扩散现象,分析了贵州省内当今的大蹄蝠种群分布情况:(1)按照《贵州兽类志》所划分的兽类地理区划将贵州分为五个地理省,对这五个地理省及相邻的云南和广西地区进行大蹄蝠标本采样,在这七个样区,共采集到大蹄蝠样本(翼膜或肌肉)475号。将所采集的样本分为三个类群分别进行分析:475个不分性别群体、261个全雄性群体、194个全雌性群体。结果显示相较于全国范围大蹄蝠的遗传多样性,本研究中的三个类群的遗传多样性均较低。不分性别群体的单倍型多样性Hd=0.555,核苷酸多样性Pi=0.00295;全雄群体的单倍型多样性Hd=0.653,核苷酸多样性Pi=0.00293;全雌群体的单倍型多样性Hd=0.449,核苷酸多样性Pi=0.00345。说明了贵州省大蹄蝠种群进化历史较近。在所有的种群中,VIB4种群的遗传多样性是最高的(不分性别群体:Hd=0.832,Pi=0.00431;全雄群体Hd=0.876,Pi=0.00392;全雌群体Hd=0.743,Pi=0.00494),暗示了该地区可能是贵州省大蹄蝠种群扩散的中心。(2)Arlequin软件计算得到的遗传分化系数(Fst)和基因流(Nm)显示,贵州的五个种群及广西种群间产生了较小的遗传分化,各种群间存在较频繁的基因流,表明遗传分化发生在近期;而这六个种群与云南种群间则产生了显著的遗传分化,存在有限的基因流。遗传分化分析还显示全雄群体各种群间的遗传分化较雌性群体中各种群的遗传分化系数显著,暗示了雌性种群间持续的基因流。多维尺度分析中并未看见各种群按照各自的地理区划分布,本研究所假设的地理障碍两端的种群聚在一起,显示出较近的遗传关系。Mantel检验也显示种群的遗传分化系数和地理距离没有显著相关性,各种群间存在丰富的基因流,说明贵州省境内所存在的地理障碍并未对大蹄蝠种群的扩散产生阻碍。Migrate计算得到成对种群间的基因流均为双向,基因流主要都是由VIB4地区为中心流向其他地区。证实了VIB4地区为贵州省的大蹄蝠种群的扩散的中心。值得注意的是在所有种群中成对种群间存在不对称的基因流,且有的种群在不同性别群体中的基因流向相反,这种现象的产生,可能是为了防止近亲繁殖该物种选择了不同的扩散方式。(3)对于三个类群中大蹄蝠种群结构的分析显示了相同的结果,系统发育树和单倍型网络结构分析呈现了高度的一致性,贝叶斯树被分为两个明显的分化支(A、B支)。网络结构图也产生了两个明显的聚类,其中VA1、VIB4种群的部分单倍型与云南种群的单倍型聚在一起,而贵州各种群则与广西聚为一支,显示了贵州种群与广西种群较近的亲缘关系。通过溯祖时间(TMRCA)的分析得出贵州及邻近的广西、云南种群的共同祖先可追溯到0.0929-0.0981Myr BP,贵州及广西种群的共祖时间可追溯到0.0555-0.0593 Myr BP,广西种群中的特有单倍型相较于其他单倍型有较早的分歧时间,表明贵州省大蹄蝠种群主要来自广西。三个类群的BSP分析均显示大蹄蝠种群在0.005-0.020 Myr BP产生了种群扩张,这一时期正好处于末次冰期结束。种群扩张时间和历史动态分析(BSP)产生了一致结果,VIB4种群在所有种群中显示了较晚的种群扩张时间。再次阐明VIB4地区为贵州省大蹄蝠近期种群扩散的中心。(4)遗传分化分析和分子方差分析(AMOVA)显示全雌群体中47%的种群间存在小而不显著的遗传分化,且雌性群体中各种群间的基因流要大于全雄群体中各种群的基因流,雌性群体并未形成稳定系统地理结构。说明了在省级区域范围内雌性群体参与了种群扩散并存在较频繁的基因交流。但由于D-loop控制区为母系遗传,在此并不能完全说明大蹄蝠是否存在显著的偏性扩散。(5)贵州地区喀斯特地貌发达,存在较多的岩溶洞穴,为大蹄蝠提供了理想的栖息场所。其中VIB4地区包括了贵州的一个高温区,有较好的植被环境和较多的大洞长洞,良好的环境、丰富的资源使该地区成为现今贵州省大蹄蝠种群主要的分布区。
[Abstract]:The large hoofed bat (Hipposideros armiger) is widely distributed in Guizhou province. The molecular phylogeography of the large hoofed bat (H.armiger) has been reported. This paper uses the mitochondrial DNA control area (D-loop region) as a molecular marker. The genetic diversity, population genetic structure, historical dynamics, and so on are carried out at the provincial level in this species. In the study, the population diffusion center of the large hoofed bat in Guizhou province was expounded. The phenomenon of partial diffusion of the large hoofed bat (H.armiger) in the small scale was preliminarily discussed. The distribution of the large hoofed bat population in Guizhou province today was analyzed. (1) Guizhou was divided into five geographical provinces according to the veterinary geographical zoning divided by Guizhou beasts. Samples of large hoofed bats were sampled from five geographical provinces and neighbouring Yunnan and Guangxi regions. In these seven samples, samples of large hoofed bats (wing membrane or muscle) 475 were collected. The samples were divided into three groups, 475 without sex, 261 all male and 194 full female. The genetic diversity of the large hoofed bat in the country is low in genetic diversity of the three groups in this study. The haplotype diversity Hd=0.555, nucleotide diversity Pi=0.00295, the haplotype diversity Hd=0.653, nucleotide diversity Pi=0.00293 of the whole male population, the haplotype diversity Hd=0.449 of the whole female population, the nucleotide diversity of the whole female population, and the nucleotide diversity. Sex Pi=0.00345. shows that the population evolution history of Guizhou hoofed bat population is close. Among all the populations, the genetic diversity of the VIB4 population is the highest (Hd=0.832, Pi=0.00431, Hd=0.876, Pi=0.00392, Hd=0.743, Pi=0.00494) of the whole male population, suggesting that the region may be the center of the proliferation of the large hoofed bat population in Guizhou province. (2) the genetic differentiation coefficient (Fst) and gene flow (Nm) obtained by the Arlequin software show that there is a small genetic differentiation between the five populations of Guizhou and the Guangxi population, and there is a relatively frequent genetic flow among the groups, indicating that the genetic differentiation occurs in the near future; and the six populations and the Yunnan population have a significant genetic differentiation. The genetic differentiation analysis also showed that the genetic differentiation between the various groups of the male population was more significant than that of the females in the female population, suggesting the continuous gene flow among the female populations. The population gathered together, showing that the genetic relationship.Mantel test also showed that there was no significant correlation between genetic differentiation coefficient and geographical distance, and there was a rich gene flow among various groups, indicating that the geographical obstacles existed in Guizhou did not prevent the proliferation of the large hoofed bat population by.Migrate calculation. The flow of gene flow is both bidirectional, and the flow of gene flow mainly flows from VIB4 area to other regions. It is confirmed that the VIB4 region is the center of the proliferation of the large hoofed bat population in Guizhou province. It is worth noting that there is an asymmetric gene flow among the pairs of populations in all populations, and the flow of some species in different sex populations is opposite, The emergence of this phenomenon may be to prevent the selection of different diffusion modes for the species. (3) the analysis of the population structure of the three groups of the large hoofed bats showed the same results. The phylogenetic tree and haplotype network structure analysis showed high consistency, and the Bayes tree was divided into two distinct branches (A, B branch). The network structure map also produced two distinct clusters, in which the VA1, the partial haplotypes of the VIB4 population were clustered with the haplotypes of the Yunnan population, while the Guizhou groups were clustered with Guangxi, showing the close relationship between the Guizhou population and Guangxi population. Through the analysis of the abduction time (TMRCA), Guizhou and the neighboring Guangxi were found. The common ancestor of the southern population can be traced back to 0.0929-0.0981Myr BP, the common ancestor time of Guizhou and Guangxi populations traced to 0.0555-0.0593 Myr BP, and the characteristic haplotypes of Guangxi population were earlier than the other haplotypes, indicating that the population of the large hoofed bat population in Guizhou was mainly from Guangxi. The BSP analysis of the three groups showed the large hoofed bat. Population expansion at 0.005-0.020 Myr BP, this period was just at the end of the last glacial period. Population expansion time and historical dynamic analysis (BSP) produced a consistent result, VIB4 population showed a late population expansion time in all populations. Again, VIB4 area was the center of the recent population diffusion of Guizhou hoofed bat. (4) Genetic differentiation analysis and molecular variance analysis (AMOVA) showed that there was a small and insignificant genetic differentiation among 47% of the whole female population, and the gene flow among the groups in the female population was larger than that of all the groups in the whole male population, and the female population did not form a stable and systematic structure. The body participates in the population diffusion and has more frequent gene exchange. But because the D-loop control area is maternal inheritance, it does not fully indicate whether there is a significant partial diffusion in the large hoofed bat. (5) the Karst geomorphology in Guizhou area is well developed and there are many karst caves, which provide an ideal habitat for the large hoofed bat. Among them, the VIB4 area includes A high temperature area in Guizhou has good vegetation environment and many big hole long holes, good environment and abundant resources, which makes the area the main distribution area of the large hoofed bat population in Guizhou province.

【学位授予单位】:贵州师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q958

【参考文献】

相关期刊论文 前10条

1 蒋志刚;马勇;吴毅;王应祥;冯祚建;周开亚;刘少英;罗振华;李春旺;;中国哺乳动物多样性[J];生物多样性;2015年03期

2 李艳丽;邵永刚;刘志霄;刘奇;陈毅;张佑祥;张礼标;;在不同状态和生境复杂度中大蹄蝠回声定位叫声的可塑性[J];兽类学报;2014年03期

3 陈冬梅;康宏樟;刘春江;;中国大陆第四纪冰期潜在植物避难所研究进展[J];植物研究;2011年05期

4 唐佳;付子英;吴飞健;;声刺激时程和模式影响大蹄蝠下丘神经元的恢复周期[J];生理学报;2010年05期

5 付子英;唐佳;JEN Philip Hung-Sun;陈其才;;大蹄蝠回声定位信号特征与下丘神经元频率调谐[J];动物学杂志;2009年01期

6 张成菊;吴毅;;洞穴型蝙蝠的栖息环境选择、生态作用及保护[J];生物学通报;2006年05期

7 张冬青;林昌虎;何腾兵;;贵州喀斯特环境特征与石漠化的形成[J];水土保持研究;2006年01期

8 张劲硕,张俊鹏,梁冰,张树义;世界翼手目动物分类系统和种类最新报道[J];动物学杂志;2005年02期

9 王进忠,张劲硕,周江,张树义;5种食虫蝙蝠的生态形态特征与猎物选择的相关性[J];北京农学院学报;2005年01期

10 褚栋,张友军,丛斌,徐宝云,吴青君,朱国仁;烟粉虱不同地理种群的mtDNA COI基因序列分析及其系统发育[J];中国农业科学;2005年01期

相关博士学位论文 前2条

1 许立杰;3种菊头蝠科蝙蝠分子系统地理学研究[D];东北师范大学;2010年

2 陈会明;贵州洞穴蜘蛛研究[D];河北大学;2009年

相关硕士学位论文 前5条

1 张婵;大蹄蝠的种下分类及栖息地选择研究[D];河南师范大学;2014年

2 徐海龙;大蹄蝠、大菊头蝠及红白鼯鼠线粒体全基因组序列分析[D];四川农业大学;2012年

3 卢冠军;大蹄蝠不同种群回声定位声波地理差异研究[D];东北师范大学;2009年

4 宋利荣;贵州喀斯特植被自然恢复评价指标体系研究[D];贵州师范大学;2009年

5 郭婷婷;大蹄蝠的微卫星标记筛选及其种群遗传学研究[D];华东师范大学;2009年



本文编号:1785566

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/1785566.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户00952***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com