结核分枝杆菌Rv3340(metC)可通过增强硫化氢的产生来提高重组菌低氧存活
【学位单位】:西南大学
【学位级别】:博士
【学位年份】:2020
【中图分类】:R378.911
【文章目录】:
Abstract
摘要
Chapter Ⅰ:Literature Review
1.1 BACKGROUND
1.2 GLOBAL BURDEN AND TB IMPACT
1.3 DRUG RESISTANT TB BURDEN
1.4 Difference between active TB and LTBI
1.5 TREATMENT OF MDR-TB
1.6 TB TRANSMISSION AND PREVENTIVE TREATMENT
1.7 INCUBATION PERIOD
1.8 TUBERCULOSIS DIAGNOSIS
1.9 EMERGING DRUGS AND DRUG TARGETS AGAINST TUBERCULOSIS
1.10 METABOLIC PATHWAYS
1.10.1 Targeting the M.tuberculosis fatty acid
1.10.2 TARGETING THE M.TUBERCULOSIS LONG-CHAIN FATTY ALCOHOLS
1.10.3 TARGETING THE M.TUBERCULOSIS TCA CYCLE
1.10.4 TARGETING THE M.TUBERCULOSIS IRON HOMEOSTASIS
1.10.5 TARGETING THE M.TUBERCULOSIS DORMANCY
1.11 TARGETING THE M.TUBERCULOSIS TOXIN-ANTITOXIN
1.12 Targeting the M.tuberculosis cell wall
1.13 TARGETING THE M.TUBERCULOSIS EFFLUX PUMP
1.14 Targeting the M.tuberculosis ATP synthase
1.15 Potential novel drug targets against M.tuberculosis
1.16 New paradigm for novel antibiotics discovery and improvement
1.17 Therapeutic application
Chapter Ⅱ:Introduction
2.1 RESEARCH SIGNIFICANCE
2.2 GENERAL AIM
2.3 SPECIFIC OBJECTIVES
Chapter Ⅲ:Mycobacterium tuberculosis metC(Rv3340)derived hydrogen sulfide conferring bacteria stress survival
3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 INSTRUMENTS
3.2.2 Reagents
3.3 SDS-PAGE REAGENTS
3.4 OTHER REAGENTS
3.5 MEDIA AND BUFFER PREPARATION
3.6 BACTERIAL STRAINS AND GROWTH CONDITIONS
3.7 Plasmid construction
3.8 Restriction enzyme digestion and detection by gel
3.9 Agarose gel electrophoresis
3.10 Gel extraction
3.11 Ligation
3.12 Transformation
3.13 EXPRESSION OF RV3340 IN M.SMEGMATIS
3.14 THE MIC DETERMINATION FOR ANTIBIOTICS
3.15 H2S ACTIVITY AND H2O2 SENSITIVITY
3.16 HYDROGEN SULPHIDE INHIBITOR ASSAY
3.17 FENTON REACTION
3.18 RNA PREPARATION AND RT-PCR
3.19 STATISTICAL ANALYSIS
3.20 RESULTS
3.20.1 The Rv3340 gene is conserved among mycobacteria
3.20.2 Overexpression of Rv3340 decrease streptomycin susceptibility
3.20.3 Docking analysis of Rv3340 protein
3.20.4 Hydrogen sulfide production
Rv3340 to growth'> 3.20.5 Exogenous h2s facilitated MsRv3340 to growth
Rv340'> 3.20.6 Thiourea delayed streptomycin mediated killing MsRv340
Rv340'> 3.20.7 The effective of streptomycin and H2O2 against MsRv340
Rv3340 survival against inhibitor'> 3.20.8 H2S is necessary for MsRv3340 survival against inhibitor
3.20.9 H2O2 mediated cysteine induction of dna damage
Rv3340 to diamide stress'> 3.20.10 Response of MsRv3340 to diamide stress
3.20.11 Rv3340 transcriptional regulator of mRNA expression levels of H2S and streptomycin responsive genes
3.20.12 Discussion
Chapter Ⅳ:Mycobacterium tuberculosis Rv3340(metC)improving recombinants hypoxia survival via enhanced hydrogen sulfide production
4.1 INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 INSTRUMENTS
4.2.2 Reagents
4.3 SDS-PAGE REAGENTS
4.4 OTHER REAGENTS
4.5 RNA ISOLATION AND RT-PCR ANALYSES
4.6 CHEMICALS AND REAGENTS
4.7 MEDIA AND GROWTH CONDITIONS
4.8 SURVIVAL CURVES
METC UNDER HARSH CONDITIONS'> 4.9 IN VITRO GROWTH OF MSMETC UNDER HARSH CONDITIONS
4.10 PH MEASUREMENT
4.11 MEASUREMENTS OF CYSTEINE EXCRETION
4.12 STATISTICAL ANALYSIS
4.13 RESULTS
metC survival in hypoxia'> 4.13.1 The increases of nicotinamide concentration enhance MsmetC survival in hypoxia
metC growth'> 4.13.2 Glucose reduces the recombinant MsmetC growth
metC via endogenous H2S in hypoxia'> 4.13.3 NaHS restores the growth of recombinant MsmetC via endogenous H2S in hypoxia
metC'> 4.13.4 Acidification state of h2s produced by MsmetC
metC in hypoxia'> 4.13.5 Sulfur compound does effectively the cysteine excreted by MsmetC in hypoxia
metC growth in hypoxia'> 4.13.6 Systeine sensitizes MsmetC growth in hypoxia
metC mRNA treated with NaHS in hypoxia'> 4.13.7 Relative transcription levels of MsmetC mRNA treated with NaHS in hypoxia
4.14 Discussion
Chapter Ⅴ:Conclusion
5.1 CONCLUSION
References
Acknowledgements
Contributions
Abbreviations
【相似文献】
相关期刊论文 前10条
1 Yugang Li;Weihui Li;Zhiwei Xie;Hui Xu;Zheng-Guo He;;MpbR,an essential transcriptional factor for Mycobacterium tuberculosis survival in the host,modulates PIM biosynthesis and reduces innate immune responses[J];Journal of Genetics and Genomics;2019年12期
2 Vandana Dabla;;Hitting the bull's eye of ending tuberculosis goal: The challenge of addressing tuberculosis in human immunodeficiency virus positive population in India[J];World Journal of Virology;2019年01期
3 张兴;;Association of ICOS and CD28 single nucleotide polymorphisms with pulmonary tuberculosis susceptibility[J];China Medical Abstracts(Internal Medicine);2020年01期
4 方瑞;;CT findings of fireworks sign in active pulmonary tuberculosis[J];China Medical Abstracts(Internal Medicine);2019年02期
5 Wei Li;Wei Liu;Guiming Zhou;;Imaging features of IRIS caused by AIDS and complicated by tuberculosis[J];Infection International;2017年01期
6 罗晶晶;;Evaluation of a high-intensity fluorescent fluorophage method for diagnosis of drug-resistance in tuberculosis[J];China Medical Abstracts(Internal Medicine);2017年04期
7 Chiranjibi Chhotaray;Yaoju Tan;Julius Mugweru;Md Mahmudul Islam;H.M.Adnan Hameed;Shuai Wang;Zhili Lu;Changwei Wang;Xinjie Li;Shouyong Tan;Jianxiong Liu;Tianyu Zhang;;Advances in the development of molecular genetic tools for Mycobacterium tuberculosis[J];Journal of Genetics and Genomics;2018年06期
8 Md Mahmudul Islam;H.M.Adnan Hameed;Julius Mugweru;Chiranjibi Chhotaray;Changwei Wang;Yaoju Tan;Jianxiong Liu;Xinjie Li;Shouyong Tan;Iwao Ojima;Wing Wai Yew;Eric Nuermberger;Gyanu Lamichhane;Tianyu Zhang;;Drug resistance mechanisms and novel drug targets for tuberculosis therapy[J];Journal of Genetics and Genomics;2017年01期
9 Hyungil Seo;Seohyun Lee;Hoonsub So;Donghoi Kim;Seon-Ok Kim;Jae Seung Soh;Jung Ho Bae;Sun-Ho Lee;Sung Wook Hwang;Sang Hyoung Park;Dong-Hoon Yang;Kyung-Jo Kim;Jeong-Sik Byeon;Seung-Jae Myung;Suk-Kyun Yang;Byong Duk Ye;;Temporal trends in the misdiagnosis rates between Crohn's disease and intestinal tuberculosis[J];World Journal of Gastroenterology;2017年34期
10 LI Xiao Ying;LI Ying;ZHANG Yao;KANG Wan Li;ZHAO Li Ping;DING Peng Ju;DAI Wen Tao;HUANG Hai Rong;HUANG Yan Feng;LI Wei Min;;The Epidemiological Characteristics of Beijing Lineage Mycobacterium tuberculosis from a National Referral Center in China[J];Biomedical and Environmental Sciences;2015年07期
相关博士学位论文 前6条
1 NZUNGIZE LAMBERT;结核分枝杆菌Rv3340(metC)可通过增强硫化氢的产生来提高重组菌低氧存活[D];西南大学;2020年
2 ZESHAN HABIB;[D];华中农业大学;2017年
3 谢姣;结核分枝杆菌致病基因簇的全基因组偶联定位及功能分析[D];吉林大学;2015年
4 王竹;奥氏体不锈钢在H_2S环境下的腐蚀行为与钝化膜演化研究[D];北京科技大学;2018年
5 陆宇;结核分枝杆菌mRNA定量检测作为活菌标志及其用于利福平药物敏感性分析、化疗反应监测的研究[D];北京市结核病胸部肿瘤研究所;2003年
6 朱秀芳;中温H_2S固体氧化物燃料电池阳极材料的制备及性能研究[D];南京理工大学;2012年
相关硕士学位论文 前10条
1 Abdiweli Mohamed Ahmed(维力);[D];东南大学;2018年
2 李晓迎;北京谱系结核分枝杆菌分型和相关临床研究[D];重庆医科大学;2014年
3 何健;两种结核分枝杆菌检测方法比较和人群结核分枝杆菌感染影响因素研究[D];兰州大学;2015年
4 黄芳;结核分枝杆菌耐氨基糖苷类药物相关基因突变的研究[D];第四军医大学;2011年
5 丁卫民;耐多药肺结核与结核分枝杆菌L型感染的临床研究[D];山西医科大学;2003年
6 李登极;H_2S等有毒有害气体传感器的制备及其性能研究[D];电子科技大学;2019年
7 李超;H_2S在MEA促进的MDEA水溶液中的吸收特性及粘度研究[D];华北电力大学;2019年
8 曹纯玉;谷子中H_2S响应光信号及参与植物个体间交流[D];山西大学;2019年
9 褚国庆;膝关节骨性关节炎中膝关节液H_2S浓度与疾病严重程度的相关研究[D];青岛大学;2019年
10 迟倩茹;基于MAPKs/NF-κB途径探究H_2S暴露致肉鸡脾脏程序性坏死的分子机制[D];东北农业大学;2019年
本文编号:2867705
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/2867705.html