新型铋基纳米粒子用于放射治疗增强
发布时间:2024-09-17 16:08
放射疗法是一种众所周知的非侵入性治疗方法,临床中超过50%的癌症患者采用放疗手段。在理想的放射疗法中,在肿瘤内接受放疗剂量,同时周围的健康组织能够免受辐射损伤。为了实现这一目标,可以通过与纳米医学相结合来改善放射疗法。纳米颗粒是一种非活性物理放射增敏剂,在肿瘤部位,纳米颗粒周围的沉积辐射剂量会局部增加。最近,具有诊断和治疗功能的铋基纳米颗粒由于高原子序数,低毒性和低成本作为放射治疗和成像中的治疗剂引起了广泛的关注。在这项研究中,我们引入了新的多功能铋基纳米粒子,铋铁氧体(BFO)和氧化铋钆(Bi Gd O3)纳米粒子作为放射治疗和成像的放射增敏剂。用溶胶-凝胶法合成了纳米粒子。在合成纳米颗粒并用PEG对其进行表面修饰后,通过CCK-8测定评估纳米颗粒的生物相容性。通过体外(克隆形成实验和CCk-8测试),体内和凝胶剂量测定评估BFO和Bi Gd O3纳米颗粒对放射治疗中的辐射剂量增强的影响。使用具有的4T1乳腺癌BALB/c雌性荷瘤鼠进行体内癌症放射疗。用于MR和CT图像的体模研究的弛豫时间(R2)和CT值(HU)显示出与纳米颗粒和浓度的线性关...
【文章页数】:120 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
ABBREVIATION
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Problems and significances
1.3 Radiation therapy
1.3.1 External radiation therapy
1.3.2 Internal Radiation Therapy-Brachytherapy
1.4 Interaction of photon with matter
1.4.1 Photoelectric effect
1.4.2 Compton scattering
1.4.3 Pair Production
1.5 Nanoparticles in medicine
1.5.1 Toxicity of nanoparticles
1.5.2 Enhanced radiation dose by high atomic number nanoparticles
1.5.3 Gold nanoparticles
1.5.4 Bismuth nanoparticles
1.5.5 Gadolinium nanoparticles
1.5.6 Delivery of nanoparticles and drug in tumor
1.6 Research contents in this study
CHAPTER 2 EXPERIMENTAL PROCEDUR
2.1 Synthesis and characterization nanoparticles
2.1.1 Materials
2.1.2 Synthesis and characterization of BFO nanoparticles
2.1.3 Synthesis and characterization of BiGd03 nanoparticles
2.2 Gel dosimetry
2.3 Biological experiment-(in vitro,in vivo)
2.3.1 Cancer cell lines
2.3.2 Cell culture
2.3.3 The cytotoxicity of the nanoparticles
2.3.4 Clonogenic assay
2.3.5 In vitro radiotherapy (BFO nanoparticles)
2.4 In vivo experiment (BiGdO3-PEG nanoparticles)
2.5 MRI and CT imaging
2.6 Inductive Heating Property
2.7 Statistical analysis
CHAPTER 3 BISMUTH FERRITE NANOPARTICLES AS RADIOSENSITIZER
3.1 Introduction
3.2 Characterization of synthesized nanoparticles (BFO)
3.3 In vitro experiment results
3.3.1 Biocompatibility (BFO-NPs)
3.3.2 In vitro-radiosensitization
3.4 Gel results
3.5 Imaging results
3.5.1 T_2 MR imaging
3.5.2 CT imaging
3.6 Inductive heating property
3.7 BFO nanoparticles-loaded brachytherapy spacer
3.8 Discussion
3.9 Conclusion
CHAPTER 4 BISMUTH GADOLINIUM OXIDE NANOPARTICLES ASRADIOSENSITIZER
4.1 Introduction
4.2 Characterization of synthesized nanoparticles (BiGdO_3)
4.3 In vitro experiment-BiGdO_3 nanoparticles
4.3.1 In vitro Biocompatibility
4.3.2 In vitro radiosensitizing results-BiGdO_3
4.4 Gel dosimetry results-BiGdO_3
4.5 In vivo results-BiGdO_3
4.6 Imaging-phantom and in vivo results-BiGdO_3
4.6.1 MRI
4.6.2 CT
4.7 Discussion
4.8 Conclusion
CHAPTER 5 BISMUTH- BASED NANOPARTICLES ASRADIOSENSITIZER
5.1 Introduction
5.2 Brachytherapy sources
5.3 Monte Carlo simulations
5.3.1 Calculation of TG-43 parameters
5.4 Nanoparticles dose enhancement-simulation
5.4.1 MCNP-Monte Carlo
5.4.2 Analytical simulation
5.5 Validation of radiation sources-MCNP
5.6 Radiation Dose Enhancement-Results
5.6.1 MCNP code
5.6.2 Analytical method
5.7 Discussion
5.8 Conclusions
CHAPTER 6 CONCLUSION
6.1 Thesis conclusion
6.2 Study innovation
REFERENCES
ACKNOWLEDGMENT
RESUME /PUBLICATINS
本文编号:4005702
【文章页数】:120 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
ABBREVIATION
CHAPTER 1 INTRODUCTION
1.1 Background
1.2 Problems and significances
1.3 Radiation therapy
1.3.1 External radiation therapy
1.3.2 Internal Radiation Therapy-Brachytherapy
1.4 Interaction of photon with matter
1.4.1 Photoelectric effect
1.4.2 Compton scattering
1.4.3 Pair Production
1.5 Nanoparticles in medicine
1.5.1 Toxicity of nanoparticles
1.5.2 Enhanced radiation dose by high atomic number nanoparticles
1.5.3 Gold nanoparticles
1.5.4 Bismuth nanoparticles
1.5.5 Gadolinium nanoparticles
1.5.6 Delivery of nanoparticles and drug in tumor
1.6 Research contents in this study
CHAPTER 2 EXPERIMENTAL PROCEDUR
2.1 Synthesis and characterization nanoparticles
2.1.1 Materials
2.1.2 Synthesis and characterization of BFO nanoparticles
2.1.3 Synthesis and characterization of BiGd03 nanoparticles
2.2 Gel dosimetry
2.3 Biological experiment-(in vitro,in vivo)
2.3.1 Cancer cell lines
2.3.2 Cell culture
2.3.3 The cytotoxicity of the nanoparticles
2.3.4 Clonogenic assay
2.3.5 In vitro radiotherapy (BFO nanoparticles)
2.4 In vivo experiment (BiGdO3-PEG nanoparticles)
2.5 MRI and CT imaging
2.6 Inductive Heating Property
2.7 Statistical analysis
CHAPTER 3 BISMUTH FERRITE NANOPARTICLES AS RADIOSENSITIZER
3.1 Introduction
3.2 Characterization of synthesized nanoparticles (BFO)
3.3 In vitro experiment results
3.3.1 Biocompatibility (BFO-NPs)
3.3.2 In vitro-radiosensitization
3.4 Gel results
3.5 Imaging results
3.5.1 T_2 MR imaging
3.5.2 CT imaging
3.6 Inductive heating property
3.7 BFO nanoparticles-loaded brachytherapy spacer
3.8 Discussion
3.9 Conclusion
CHAPTER 4 BISMUTH GADOLINIUM OXIDE NANOPARTICLES ASRADIOSENSITIZER
4.1 Introduction
4.2 Characterization of synthesized nanoparticles (BiGdO_3)
4.3 In vitro experiment-BiGdO_3 nanoparticles
4.3.1 In vitro Biocompatibility
4.3.2 In vitro radiosensitizing results-BiGdO_3
4.4 Gel dosimetry results-BiGdO_3
4.5 In vivo results-BiGdO_3
4.6 Imaging-phantom and in vivo results-BiGdO_3
4.6.1 MRI
4.6.2 CT
4.7 Discussion
4.8 Conclusion
CHAPTER 5 BISMUTH- BASED NANOPARTICLES ASRADIOSENSITIZER
5.1 Introduction
5.2 Brachytherapy sources
5.3 Monte Carlo simulations
5.3.1 Calculation of TG-43 parameters
5.4 Nanoparticles dose enhancement-simulation
5.4.1 MCNP-Monte Carlo
5.4.2 Analytical simulation
5.5 Validation of radiation sources-MCNP
5.6 Radiation Dose Enhancement-Results
5.6.1 MCNP code
5.6.2 Analytical method
5.7 Discussion
5.8 Conclusions
CHAPTER 6 CONCLUSION
6.1 Thesis conclusion
6.2 Study innovation
REFERENCES
ACKNOWLEDGMENT
RESUME /PUBLICATINS
本文编号:4005702
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/4005702.html