井灌区典型区域地下水位时空分布及对灌溉用水响应分析
本文关键词:井灌区典型区域地下水位时空分布及对灌溉用水响应分析 出处:《中国水利水电科学研究院》2017年硕士论文 论文类型:学位论文
更多相关文章: 丰南区 地下水埋深 时空分布 数值模拟 GMS 灰色理论 作物种植结构 农业需水量
【摘要】:华北平原是我国重要的粮食和蔬菜生产基地,该地区灌溉以地下水为主。由于长期无序开采,地下水位持续下降,引起了地面沉降裂缝、咸水界面下移入侵深层淡水、机井报废加快、生态退化和地下水污染等一系列环境和地质问题。唐山市丰南区作为华北平原一个典型的地下水开采区,通过探究丰南区地下水时空分布现状,建立丰南区地下水数值模型,分析不同农业用水方案下地下水位的变化规律,为丰南区地下水资源的合理利用提供参考。主要研究结果如下:(1)分别针对丰南区的淡水区和咸水区进行研究,采用统计学方法分析了淡水区和咸水区地下水位时间变化特征,应用地统计学法结合ArcGIS和GS+探究了其地下水位空间变化特征。1984-2014年间淡水区和咸水区平均地下水位分别下降了 6.28m和10.78m;地下水位年内均呈现季节性变化。1984-2014年间以降水量为546.96mm/a(平水年)的条件下地下水开采量应为252.29mm/a。枯水年,淡水区和咸水区地下水开采程度分别为151.35%和141.78%;丰水年地下水开采程度分别为108.89%和104.75%。(2)丰南淡水区作为农业活动的主要区域,基于丰南淡水区钻孔资料及其他相关资料,利用GMS建立起丰南淡水区非均质、各向同性二维流数值模型。模拟结果表明:模拟期和验证期地下水流场与研究区内潜水动态变化规律基本一致;模型模拟精度可靠。(3)基于丰南区水资源综合规划报告和"三条红线",结合丰南区1984-2014年各行业用水资料,运用灰色模型GM(1,1)和灰色摆动模型GM(1,1,sinw)模型预测了规划年2020年和2030年的工业、生活和第三产业需水量,其中2020年分别为3317.15万m3,2133.80 万 m3、600.42 万 m3,2030 年分别为 2709.64 万 m3,2578.40 万 m3 和 466.93万m3。基于种植结构资料及构建的农业种植结构优化模型,2020年在丰水年、平水年、枯水年和特枯年条件下农业最优种植结构为:夏收粮、秋收粮、油料、棉花、蔬菜和瓜果的种植面积比例分别为 16:27:2:2:0:53、25:33:1:2:14:25、23:32:1:2:15:27、19:27:2:2:18:32;2030年在丰水年、平水年、枯水年和特枯年条件下农业最优种植结构为:夏收粮、秋收粮、油料、棉花、蔬菜和瓜果的种植面积比例分别为17:26:2:3:1:51、25:35:1:2:13:24、26:36:1:2:12:23、19:26:2:3:17:33。(4)运用GMS建立的地下水模型对2020年和2030年的设置丰水年、平水年、枯水年和特枯年最优作物种植结构下农业需水量4种情景进行模拟,从时间和空间两个维度对结果进行分析表明:规划年研究区地下水埋深年内随降水和灌溉呈现季性的变化规律;各模拟情景下的年平均地下水埋深、枯季和丰季平均地下水埋深较现状年均有所回升;其中各个模拟情景下的年平均地下水埋深较现状年分别回升了 2.3m、2.27m、2.07m、1.81m、2.65m、2.34m、2.15m和1.92m,且地下水埋深空间分布稳定。因此,以最严格水资源管理制度为限定,进行最优作物种植,有利于缓解地下水位的下降趋势,涵养水源。
[Abstract]:The North China Plain is an important food and vegetable production base in China. Groundwater is the main irrigation area in this area. Due to long-term disorderly exploitation, the groundwater level continues to decline, causing land subsidence cracks. A series of environmental and geological problems such as downward movement of saltwater interface into deep fresh water, accelerated abandonment of machinery wells, ecological degradation and groundwater pollution. Fengnan District of Tangshan City is a typical groundwater mining area in North China Plain. By exploring the present situation of groundwater temporal and spatial distribution in Fengnan District, a numerical model of groundwater in Fengnan District was established, and the variation law of groundwater level under different agricultural water use schemes was analyzed. The main results are as follows: (1) the main research results are as follows: 1) the fresh water and salt water areas in Fengnan District are studied respectively. The time variation characteristics of groundwater level in fresh and brackish water areas were analyzed by statistical method. Using geostatistics method combined with ArcGIS and GS to study the spatial variation characteristics of groundwater table. The average groundwater level in fresh water area and brackish water area decreased from 1984 to 2014, respectively. 6.28m and 10.78m; Seasonal variation of groundwater levels during the year. From 1984 to 2014, the precipitation was 546.96 mm / a (mean year). The groundwater extraction rate should be 252.29mm / a. Dry year. The degree of groundwater exploitation in fresh water area and brackish water area is 151.35% and 141.78 respectively. The extent of groundwater exploitation in abundant water year is 108.89% and 104.75. 2 respectively. As the main area of agricultural activities, Fengnan fresh water area is based on the drilling data and other related data of Fengnan fresh water area. The numerical model of heterogeneous and isotropic two-dimensional flow in the fresh water region of Fengnan is established by using GMS. The simulation results show that the groundwater flow field in the simulation period and the verification period is basically consistent with the dynamic variation law of the phreatic water in the study area. Based on the comprehensive water resources planning report and "three red lines" in Fengnan District, the grey model GM(1 is used to combine the water use data of various industries in Fengnan District from 1984 to 2014. 1) and the grey swinging model (GMZ1) and the grey swinging model (GM1) are used to predict the water demand of industrial, domestic and tertiary industries in 2020 and 2030 of the planning year. In 2020, it was thirty-three million one hundred and seventy-one thousand and five hundred m ~ 3 ~ (3) C ~ (-1) 2133.8 million m ~ (3), respectively, and twenty-seven million ninety-six thousand and four hundred m ~ (3) ~ (3) in the year of 2030m ~ (3) respectively. Twenty-five million seven hundred and eighty-four thousand m3 and four million six hundred and sixty-nine thousand and three hundred m3. Based on the data of planting structure and the optimized model of agricultural planting structure, in 2020, in high water year, average water year. The optimum planting structure of agriculture in dry year and special dry year is as follows: summer grain, autumn grain, oil, cotton, vegetable and melon and fruit are 16: 27: 2: 2: 2: 0: 53 respectively. 25: 33: 1: 2: 14: 25: 2523: 32: 1: 2: 15: 27: 27: 27: 27: 2: 2: 18: 32; In 2030, under the conditions of high water, plain water, dry water and special dry year, the optimum planting structure of agriculture was as follows: summer grain, autumn grain, oil, cotton. The planting area ratio of vegetables and fruits is 17: 26: 2: 2: 2: 1: 5 1: 5 25: 35: 1: 1: 21: 24: 26: 36: 1: 2: 12: 23. 19: 26: 2: 3: 17: 33. 4) the groundwater model established by GMS is used to set up the year of abundant water and the year of average water in 2020 and 2030. Four scenarios of agricultural water demand were simulated under the optimal crop planting structure in dry year and special dry year. The results were analyzed from two dimensions of time and space. The results showed that the seasonal variation of groundwater depth with precipitation and irrigation was observed in the study area in the planning year. The average groundwater depth in each simulation scenario was higher in dry season and abundant season than that in current year. The average annual groundwater depth in each simulation scenario is 2.3mGN 2.27mGN 2.07mGN 1.81mGN 2.65mGN 2.34m, respectively, as compared with the current year. 2.15m and 1.92m, and the spatial distribution of groundwater depth is stable. Therefore, taking the strictest water resources management system as the limit, the optimal crop planting will help to alleviate the downward trend of groundwater level. Conserving water.
【学位授予单位】:中国水利水电科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P641.8;S273
【相似文献】
相关期刊论文 前3条
1 王洪悦,张丽君,李国春;谈丰南区旱情与水资源可持续利用[J];河北水利;2004年04期
2 李宝强,张丽君,李国春;丰南区水资源费征收存在问题及措施浅议[J];河北水利;2004年03期
3 魏秀爱;;丰南区水资源的管理及节水措施[J];河北水利;2010年10期
相关重要报纸文章 前10条
1 孙海芬;郭文良当选丰南区区长[N];唐山劳动日报;2010年
2 李学良 刘新 汤润清;丰南区确定帮扶项目503个[N];河北日报;2013年
3 张旖旎 白薇 周占领;丰南区:“三大工程”让孩子们学习劲更足[N];唐山劳动日报;2014年
4 施文阐;我市丰南区等四个单位入选2014年度河北省文化产业“三个十”[N];唐山劳动日报;2014年
5 通讯员 黄嫣然 王茜 何宇 记者 闫立军;丰南区倾力打造融资“绿色通道”[N];河北经济日报;2014年
6 媛媛、闫城榛;市领导督导检查丰南区百日推进行动[N];唐山劳动日报;2009年
7 记者杜庆君;吴海英就科技创新工作赴开滦及丰南区调研[N];唐山劳动日报;2010年
8 孙海芬 周占领 王俊青;阳光路上排头兵[N];唐山劳动日报;2011年
9 本报记者 周红松 通讯员 周志广 韩志刚;“有免费校车接送,孩子安全不用担心”[N];中国教育报;2011年
10 李清照、林卫国、周占领;丰南区多措并举推进科技创新[N];唐山劳动日报;2011年
相关硕士学位论文 前1条
1 刘海若;井灌区典型区域地下水位时空分布及对灌溉用水响应分析[D];中国水利水电科学研究院;2017年
,本文编号:1411332
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1411332.html