日粮中添加复合菌剂对绵羊瘤胃微生物区系及发酵功能的影响
本文选题:复合益生菌 + 复合菌培养物 ; 参考:《内蒙古农业大学》2017年硕士论文
【摘要】:本论文主要运用RT-PCR技术,研究了在不同的精粗比日粮水平下,添加复合益生菌及其培养物对绵羊瘤胃液总细菌,总厌氧真菌,琥珀酸拟状杆菌、白色瘤胃球菌、黄色瘤胃球菌三种主要纤维降解菌,以及乳酸菌,牛链球菌,反刍兽新月形单胞菌,溶丁酸弧菌,嗜淀粉瘤胃杆菌,普雷沃氏b族菌,以及总产甲烷菌数量的影响;并对绵羊瘤胃发酵参数、消化酶活性和绵羊血液中可溶性CD4、CD8免疫指标的影响。本研究选用6只体况良好、平均体重(45.5±1.52)kg、装有永久性瘤胃瘘管的蒙古绵羊羯羊;采用自身对照交叉试验设计,分批次进行两期交叉实验,每个试验期35天,预饲期15天,正式期20天。试验一期,试验动物分为两组,每组3只,1组为低精料组,2组为高精料组:试验二期两组日粮交换,中间2周过渡期:每期3个阶段,分别为试验Ⅰ阶段(对照组)、试验Ⅱ阶段(饲喂10天复合益生菌液/复合益生菌培养物)、试验Ⅲ阶段(饲喂20天复合益生菌液/复合益生菌培养物)。在每个试验阶段初始连续3天,晨饲前取瘤胃内容物测定瘤胃微生物数量及消化酶的活性;取晨饲后2、4、6、8、12h瘤胃内容物检测瘤胃发酵参数;并且采集晨饲前绵羊颈静脉血检测血清中可溶性CD4、CD8的含量。试验结果表明:(1)低精料日粮水平下,添加复合益生菌后,绵羊瘤胃总细菌、琥珀酸拟状杆菌、黄色瘤胃球菌、溶纤维丁酸弧菌、乳酸杆菌、嗜淀粉瘤胃杆菌显著升高(P0.05),总厌氧真菌、反刍兽新月形单胞菌数量有升高趋势,但不显著(P0.05),白色瘤胃球菌、普雷沃氏b族菌显著降低(P0.05),牛链球菌、总产甲烷菌无显著变化(P0.05)。(2)低精料日粮水平下,添加复合益生菌培养物后,绵羊瘤胃总细菌、琥珀酸拟状杆菌显著升高(P0.05),总厌氧真菌、白色瘤胃球菌、溶纤维丁酸弧菌、反刍兽新月形单胞菌、乳酸杆菌、普雷沃氏b族菌、总产甲烷菌显著降低(P0.05),牛链球菌数量有升高趋势,黄色瘤胃球菌数量有降低趋势,但变化不显著(P0.05),嗜淀粉瘤胃杆菌无变化(P0.05)。(3)高精料日粮水平下,添加复合益生菌后,绵羊瘤胃总厌氧真菌、琥珀酸拟状杆菌、嗜淀粉瘤胃杆菌显著升高(P0.05),溶纤维丁酸弧菌、反刍兽新月形单胞菌、乳酸杆菌、普雷沃氏b族菌有升高趋势,但不显著(P0.05),牛链球菌、总产甲烷菌显著降低(P0.05),总细菌、黄色瘤胃球菌、白色瘤胃球菌数量有降低趋势但不显著(P0.05)。(4)高精料日粮水平下,添加复合益生菌培养物后,绵羊瘤胃总厌氧真菌、牛链球菌、嗜淀粉瘤胃杆菌显著升高(P0.05),琥珀酸拟状杆菌、白色瘤胃球菌有降低趋势,黄色瘤胃球菌、总细菌、溶纤维丁酸弧菌、反刍兽新月形单胞菌显著降低(P0.05),乳酸杆菌数量有降低趋势(P0.05),普雷沃氏b族菌、总产甲烷菌无变化(P0.05)。(5)添加复合益生菌和复合益生菌培养物后,不同日粮水平下都提高了瘤胃pH值并降低了 NH3-N浓度,并促使VFA乙丙比降低,TVFA升高,但是变化幅度复合益生菌较大。(6)添加复合益生菌和复合益生菌培养物后,瘤胃内羧甲基纤维素酶在低精日粮水平下显著升高(P0.05),高精日粮下显著降低(P0.05),蛋白酶均显著升高(P0.05),淀粉酶在复合益生菌添加后,比较稳定。(7)添加复合益生菌和复合益生菌培养物后,各处理组绵羊血液中sCD4+分子含量显著升高(P0.05),添加复合益生菌处理组绵羊血液中sCD8+含量均有降低趋势,但不显著(P0.05),而添加复合益生菌培养物处理组的绵羊血液中的sCD8+含量有上升趋势,且复合益生菌培养物组的sCD8+含量在低精料日粮水平下显著升高(P0.05)。
[Abstract]:In this paper, we used RT-PCR technology to study three major fibrous degrading bacteria, total anaerobic bacteria, total anaerobes, Pyrococcus succinate, white rumen coccus, rumen coccus, and lactic acid bacteria, Streptococcus NIUs and ruminant crescent. The effects of cytobacilli, Vibrio butyrate, bacilli amylophilus, Poulet Was B, and total methanogenic bacteria on the rumen fermentation parameters, digestive enzyme activity and the immune index of soluble CD4 and CD8 in sheep blood. The 6 body conditions were good, the average weight (45.5 + 1.52) kg, and the Mongolia with permanent rumen fistula were selected. Sheep sheep; the cross experiment was designed by self controlled cross test with 35 days in each period, 15 days for the pre feeding period and 20 days for the formal period. Experimental animals were divided into two groups, 3 in each group, 1 in the low sperm group and 2 in the high concentrate group: two phase two groups of diet exchange and 2 weeks in intermediate period: 3 stages in each period, respectively. Stage I (control group), stage II (feeding 10 days compound probiotic liquid / compound probiotic Culture), Experiment III stage (feeding 20 days compound probiotic liquid / compound probiotic Culture). At the beginning of each test, the rumen content and digestive enzyme activity were measured before morning feeding, and morning feeding was taken. After 2,4,6,8,12h rumen content was detected in the rumen fermentation parameters, and the content of soluble CD4 and CD8 in serum of sheep's jugular vein before morning feeding was collected. The results showed: (1) the rumen total bacteria, Bacillus succinate, yellowish rumen cocci, Vibrio butyrate, lactic acid, lactic acid, and lactic acid were added to the diet level of low concentrate. Bacilli, bacilli amylophilic bacilli significantly increased (P0.05), total anaerobic fungi, the number of anaerobes increased, but not significant (P0.05), white rumen coccus, Poulet Was B bacteria significantly decreased (P0.05), Streptococcus Niu, total methanogenic bacteria without significant changes (P0.05). (2) low concentrate diet level, adding compound probiotics culture After that, the total bacteria in the rumen of the sheep and the Pseudomonas succinic acid increased significantly (P0.05). The total anaerobic fungi, the white rumen coccus, the soluble Vibrio butyrate, the ruminant crescendo, the lactobacillus, the Poulet Was B bacteria, the total methanogenic bacteria decreased significantly (P0.05), the number of Streptococcus increased, and the number of yellow rumen coccus had a decreasing trend. But the change was not significant (P0.05). (3) (3) under the diet level of high concentrate, after adding compound probiotics, the rumen total anaerobes of the rumen, the Pseudomonas succinate, the bacilli amylophilus increased significantly (P0.05), the fibrous Ding Suanhu bacteria, the ruminant crescendo, the lactobacillus, and the Poulet Was B bacteria increased. Trend, but not significant (P0.05), Streptococcus Niu, total methanogenic bacteria significantly decreased (P0.05), total bacteria, yellow rumen coccus, white rumen coccus number decreased but not significant (P0.05). (4) high concentrate diet level, adding compound probiotic culture, sheep rumen total anaerobes, Streptococcus, amyloid stomach bacilli significantly increased (P0.05), Pseudomonas succinic, white rumen cocci decreased, yellow rumen coccus, total bacteria, Vibrio butyrate, ruminant crescendo significantly decreased (P0.05), the number of Lactobacillus decreased (P0.05), Poulet Was B bacteria, total methanogens (P0.05). (5) adding compound probiotics and compound probiotics. After the culture, the pH value of the rumen was increased and the concentration of NH3-N was reduced, and the ratio of VFA to EPDM and TVFA increased, but the amplitude of the compound probiotics was larger. (6) after adding compound probiotics and compound probiotic culture, the rumen carboxymethylfibrinase increased significantly (P0.05) and high sperm in the low sperm diet level (P0.05). The protease increased significantly (P0.05) and protease increased significantly (P0.05), and amylase was more stable after adding compound probiotics. (7) after adding compound probiotics and compound probiotic culture, the content of sCD4+ in the blood of all the treated groups increased significantly (P0.05), and the content of sCD8+ in the blood of the sheep with the added probiotic treatment group decreased. It was not significant (P0.05), but the content of sCD8+ in the blood of the sheep of the compound probiotic culture group increased, and the content of sCD8+ in the compound probiotic culture group increased significantly (P0.05) in the low concentrate diet level.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S826.5
【参考文献】
相关期刊论文 前10条
1 耿春银;任丽萍;周振明;孟庆翔;;反刍动物酵母菌制剂应用的效果及可能作用机制[J];动物营养学报;2015年04期
2 赵洁;马晨;席晓敏;张和平;;实时荧光定量PCR技术在肠道微生物领域中的研究进展[J];生物技术通报;2014年12期
3 付晓政;史彬林;李倜宇;田丽新;李俊良;岳远西;苏俊玲;;复合益生菌对奶牛免疫及抗氧化功能的影响[J];粮食与饲料工业;2014年09期
4 程远;黄凯;黄秀芸;钟灵香;武林华;黄清;唐丽宁;;饲料中添加枯草芽孢杆菌对吉富罗非鱼幼鱼生长性能、免疫力和抗氧化功能的影响[J];动物营养学报;2014年06期
5 Vyas D;孙鹏;;活性干酵母和灭活干酵母对肉用小母牛亚急性瘤胃酸中毒、瘤胃发酵及营养物质消化率的影响[J];中国畜牧兽医;2014年05期
6 任永军;雷岷;邝良德;李丛艳;郑洁;张翠霞;杨超;李勤;张翔宇;谢晓红;郭志强;;复合芽孢杆菌制剂对肉兔肠道发育和免疫功能的影响[J];动物营养学报;2014年01期
7 王永霞;裴华;杨文;牛莉娜;饶朗毓;林英姿;;小鼠免疫细胞活性与光滑假丝酵母菌胞外多糖关系的研究[J];海南医学院学报;2012年09期
8 李雅丽;秦艳;周绪霞;李卫芬;;6株芽孢杆菌的生物学特性比较研究[J];中国畜牧兽医;2011年04期
9 李冬野;吴凌;;反刍动物微生态制剂的研究进展[J];黑龙江八一农垦大学学报;2011年01期
10 杨丽莉;吕凤霞;别小妹;何义进;王恬;陆兆新;;枯草芽孢杆菌抗菌脂肽对嗜水气单胞菌抑菌效果[J];食品科学;2011年01期
相关会议论文 前1条
1 王秋菊;许丽;崔一U,
本文编号:1869102
本文链接:https://www.wllwen.com/shoufeilunwen/zaizhiyanjiusheng/1869102.html