建筑环境设计模拟工具包DeST
本文关键词:建筑环境设计模拟工具包DeST,由笔耕文化传播整理发布。
摘要:建筑环境设计模拟工具包DeST是基于功能的模拟软件,用于对建筑、方案、系统及水力计算进行模拟,以校核设计,保证设计的可靠性。介绍了DeST的结构、用户界面,并结合工程实例说明了DeST的应用。
关键词:建筑环境模拟 模拟软件 DeST
1、开发DeST的目的近30年来,建筑和空调系统的模拟被广泛地应用在学术研究领域,出现了很多的模拟模型、模拟方法以及模拟应用工具。
模拟技术已经相对成熟,但在实际设计中,采用模拟技术辅助分析的仍然很少,大多数设计仍然仅考虑最不利工况,而没有考虑全年的运行过程,这导致了诸如设备选择不合理、过渡季无法满足要求等问题。最近,国内外的研究机构和设计公司开始投入越来越多的力量以缩小模拟和设计之间的应用鸿沟。例如在国际能源组织(IEA)最近结束的研究子项ANNEX 30[1] Bring simulation into application中,设计过程中的模拟技术应用研究是其最主要的章节。虽然,采用模拟分析的手段可以提高设计的可靠性,但只有在明确了设计和模拟之间的关系之后,才能制造出在实际设计过程中能够被有效利用的模拟分析工具。而现有国外几种主流的模拟分析工具由于在开发时没有充分考虑设计过程的阶段性、延续性等特点,只能用于学术研究领域。
设计过程是一个阶段化的过程,包括初步设计、方案设计、详细设计以及后设计阶段[2].这是一个复杂的、不断反馈的过程,目前是否存在一个模拟分析工具能够服务于整个过程呢?
目前的模拟工具可以划分成两大类:一类是基于功能的,以DOE[3]为主要代表;另一类是基于模声的,以TRNSYS[4],HVACSIM+[5],MATLAB为代表。基于功能的模拟工具从满足某种功能要求(如计算建筑全年能耗)出发来设计模拟系统;基于模块的模拟工具注重于构建系统的灵活性,其特点是采用通用的模块接口和统一的非线性求解核心。
当所有的条件都已知时,使用模块化的模拟系统可以很方便地建立起整个系统的框架并进行模拟计算,这使得它们非常适用于研究领域,通过模拟计算去了解在系统的各个部件确定后系统的运行状态。但在设计过程中,尤其是在设计的初步阶段,设计人员无法掌握所有的信息,某些数据是模拟的输出而不是输入。例如,在方案设计阶段,当设计人员试图比较不同的系统形式时,因为空调机组的选择应该在方案确定之后进行,他无法了解空调机组的具体信息。为了使模块化的模拟程序能够运行,使用者不得不采用"缺省"的部件,选择某种"缺省的空调机组"来构建模拟系统。计算机模拟软件一个很重要的特性是输出严重地依赖于输入。因此,模拟由诸多"缺省"的部件组成的系统,其结果对实际的设计不具备指导意义,当其"缺省"的是后续设计的目标时,这样的模拟计算无助于设计人员进行决策。因此,模块化的模拟工具虽然适用于学术研究,但并不适用于工程设计。
与模块工具相比,基于功能的模拟工具灵活性较低,但是更接近于设计人员思路,因此较容易被采用。为了把握全年的运行特性,设计人员通常用其来计算建筑物全年的能耗要求。作为其代表的DOE由建筑模拟、系统模拟和机组模拟三大部分组成。但其中各模块之间的关联存在着缺陷。例如,“在空调系统的模拟中,假设送风温度是已知的。这样的处理对于简单的运行方式(例如已经确定每一个时刻的送风温度)是有效的,但对于较复杂的系统则无法工作,需要采用前一时刻的数据,或者建筑物的模拟必须进行两次(对于最热控制模式和最冷控制模式)”.这意味着设计人员在方案分析阶段,进行方案比较时,不得不回到概念性阶段,再次进行建筑模拟计算。建筑模拟和系统模拟之间的联系无法体现出设计过程中两两个阶段之间的关联。而采用房间负荷作为各个阶段之间的联系导致建筑模拟、系统模拟和机组模拟等各模块过度紧密地耦合在一起,这使得DOE被限制在建筑物全年能耗分析,而不能胜任设备选择以及管网系统校验等工作。
由此可见,上述两种模拟分析工具都存在着某些缺点而无法有效地应用在设计过程中。因此,制作一个适用于设计的模拟分析工具,必须充分考虑设计过程的阶段性;处理好各个设计阶段中的已知、未知关系;设计过程应考虑全年的运行状态,因此必须采用另一种运行方式来替代实际的小步长控制方式模拟。
作为ANNEX30的一个参加者,清华大学提出了“分阶段设计,分阶段模拟”的思路,在充分考虑上述3个要素的基础上,开发出了建筑环境控制系统模拟分析工具包(DeST),并应用在若干实际工程中。DeST是基于功能的模拟软件,对应设计的不同阶段,提供相应的功能性模块。其任务是在设计的整个过程中,通过建筑模拟、方案模拟、系统模拟、水力模拟等手段对设计进行校核,并根据模拟数据结果对设计进行验证,从而保证设计的可靠性。
2、DeST的结构DeST在设计时充分考虑了“设计的阶段性”这一特点。相应于设计的不同阶段,DeST由不同的功能性模块组成,并根据阶段之间的联系在模块之间建立其相应的关联。
DeST所需要的气象数据由Medpha产生,其基础是20年的实测数据和随机气象数学模型。目前Medpha可以生成各格式的、193个中国城市的逐时气象参数。计算机辅助建筑描述程序CABD是一个基于ACAD平台的建筑描述界面,设计人员通过它描述建筑物的围护结构(几何尺寸,热特性参数)以及各种内扰的变化情况。在进行详细的建筑模拟时,需要输入各种经验系数(例如热量在空间内的分布等),这通过经验系数维护程序ECM完成。CABD是DeST的主控界面,它把用户绘制的建筑物的相关数据自动传输给建筑分析模拟模块BAS.BAS的任务对建筑物进行详细的逐时模拟,其数学模型是增强的状态空间法[6,,7].BAS是一个精确的多空间建筑模拟程序,它负责计算逐时的房间基础室温[8](RBT,在没有任何空调系统影响下的房间温度)。逐时的基础室温反映了房间在被动热扰影响的下的热特性。在初步设计阶段,建筑师可以通过基础室温来比较各种因素的影响,如围护结构的材料、朝向、建筑物的形状等等。当建筑设计确定之后,方案模拟程序Scheme[8]可用来计算建筑物在各种空调方案(分区,系统类型,运行方式)下的热特性,在方案设计阶段,设计者可以通过模拟结果对不同的空调系统方案进行比较取舍。在方案确定之后,方案模拟程序计算出对机组或者末端的详细要求,通过逐时系统要求的送回风参数以及风量,空调机组选择程序ACSel对选择的设备进行全工况满足要求,另一方面可以检验各设备在全年工况下是否能完全满足需求,另一方面得到对冷热源的水温、水量要求。当对冷热源的需求明确后,类似的方法可以用于冷热源的需求明确后,类似的方法可以用于冷热源的优化选择,通过冷热源优化程序CPO对用户选择的冷冻机类型、台数和运行方式进行校核,保证机组在整个运行周期内保持最高的能效比。通过方案模拟得到全年逐时要求的风量后(对于变风量系统),再通过送风管网可及性分析DNA计算出风机全年的工况点,从而可以根据其全运行要求选择风机,使其大部时间工作在高效率区间内。同时,通过可及性分析也可计算出各末端要求的压差,以此通过NLA对变风量末端进行噪声分析。类似的策略可以用于水管分析,通过PNA来实现。
通过这样的结构设计,设计人员在每一个阶段都能利用相应的模拟模块来计算不同设计中系统的性能(满意度、能耗要求),并通过比较确定较佳的方案。同时,本阶段模拟的一部分结果也是下一阶段设计的输入(对下一阶段的需求。)作为一个服务于设计者的工具,DeST根据设计者的要求进行繁复的计算,而设计得通过分析模拟结果对设计进行比较取舍。
3、对已知和未知条件的处理设计过程包含各种不同的设计阶段,每个阶段的已知和未知条件不同,随着设计的展开,各阶段的已知和未知条件也随时之相互转化,前一阶段的未知因素通过设计成为本阶段的已知条件。
例如,在初步设计阶段,内外扰是已知条件,在这些扰运作用下建筑物的热特性是未知的;而到了方案设计阶段,建筑物的热特性成为已知因素,设计者需要在详细的建筑物热特性的基础上对空调方案进行比较、取舍,并为进一步的设备选择提供依据。建筑物的热特性是初步设计和方案设计之间的重要桥梁,通过设计分析,它从前一阶段的未知条件变为后一阶段的已知条件。
在每一个设计阶段,DeST采用详细的数学模型来表述已知的部分,而"理想化"的部件来表述未知的部分。假设“理想化”的部件能满足任何的要求(冷热量、水量等)。这样的处理与设计过程相当吻合,并且避免了“缺省的部件”对模拟结果的不利影响。因为有些未知的部分往往是到下一阶段才能解决,无论采用何种的“缺省部件”都不能保证与下一阶段最终选择的部件一致。采用“理想化”模型具有两个优点:
基于“理想化”模型的模拟结果具有可比性,因为它们采用了相同的输入和假设。
可以得到对下一阶段的需求。“理想化”模块的输出便是对实际设备的要求,而“缺省设备”则无法为下阶段选择提供有益的信息。
已知 建筑物的热特性(基础室温、各种热扰对房间温度的响应)
未知 送风管道系统空调机组的详细信息控制手段
①计算每一个房间所要求的送风状态区域(SSRk);
②由于在任一时刻,系统只能存在一个统一的送风状态,因此需要求出所有房间送风状态区域的交集(公共的送风状态区间,CSSR);
③以公共的送风状态区域内的任何一点作为送风参数,都能使分区内所有的房间满足其设定值要求,而不同的送风状态点对应的空气处理能耗是不同的,在此通过某种优化算法计算出公共送风状态区域中的最优点,同时确定产生此最优送风状态点的相应的空气处理过程:
④在确定最优的送风状态之后,依据能耗最小的原则,可以确定系统的送风量及风机盘管或者末端再热热器投入的冷热量。
⑤计算出各个房间的温湿度。
根据计算出来的逐时的各个房间的温湿度,统计全年内各房间满足设定值要求的小时数或者比率,并以此来比较不同空调方案的性能。如果不同的方案都能满足各房间要求,则通过各方案要求能耗值来进行比较。
在此阶段,空气处理室被发作一个“理想化”的设备,假设它能够产生要求的任意送风温湿度。在进行方案模拟时,只需要确定空气处理室的类型,而不需要确定各组成的详细参数。当方案确定后,对整个空气处理室的要求随之确定。根据逐时要求的各段空气处理过程线,在详细设计阶段可以对机组的各个组成部件进行详细的校核。
同样的假设也被用在送风管网分析上。在方案分析阶段,假设送风管网可以提供任意要求的送风量。当方案设计完成后,也得到了要求的逐时风量分布数据,而这些数据正是进行风机和管网的详细校核所需要的。
4、控制和逆向计算过程通常控制都是以小步长进行的,但在空调系统设计时,需要考虑建筑物和系统全年的运行情况。
如何将这两种不同类型的过程结合在一起呢?实际上,设计可以划分成两个层次:空调系统设计和控制设计。DeST注重于解决前一层次的问题。无论选择何种系统,采用何种设备,系统设计的目的是要产生一个完全可控的、能够满足用户要求的系统。DeST对系统进行模拟时,以1h为时间步长进行长时间(全年)的计算。为了避免不同控制器特性的影响,没有采用小步长的控制方法,而用逆向的计算过程。例如,在详细设计阶段,当对变风量系统的送风管网进行分析时,设计者的任务是校验管网能否满足各个时刻的风量分布要求,并选择适当的风机。
为解决此问题,采用传统小步长控制的模拟过程是:
①选择一个风机,设定控制参数(比如PID参数);
②计算管网各处的流量;
③如果管网的流量与要求的流量没,通过某种控制策略调整变风量末端;
④在下一个小的时间步长内,重复②,以期达到要求的流量分布。
由于风道的惯性非常小,此模拟必须以相当小的时间步长进行计算(1s),能否达到要求的流量分布与控制策略有很大的关系,因此此方法不适用于对全年各种工况的校验。从另一个角度考虑此问题,假想在一种理想化的控制下,各变风量末端可以满足要求的送风量,从而可以计算出各管段上的流量;假设各房间的压力为零,则当定压点压力能够维持时,各变风量前后的压差可以计算出来,对风机的流量和压力要求也可以确定。相对于传统的模拟过程,这是一种逆向的求解过程。因此,校验送风量分布是否能够实现,应该首先通过在各工况下地风机的要求来判断,而不应立即着眼于确定详细的控制策略。只要风机和管网能够在理想控制下满足要求,则必然可以通过某种具体的控制方式满足流量分布。在设计时,应先解决"可控性"的问题,然后再解决"如何控制"的问题。图4给出了在两种定静压控制方式和一种变静压控制方式下风机的工况点。在此基础上可以选择风机以满足全年运行,结合风机的性能参数,确定风机全年能耗,也可以根据各变风量末端的压差计算出各个时刻下的末端噪声。
定压点位于风机出口处
浮动静压控制
定压点位于风道上距风机出口2/3处
采用逆向的求解思路,避免了采用小步长的反馈控制,逆向的求解过程可以看成一种开环的“理想化”控制方法。用此方法在进行设备(例如表冷盘管)校核计算时,可以计算出已知出口和入口参数时对冷冻水侧的要求。如果校核发现该设备无法达到要求的出口状态,则无论采用何种控制方式,该设备都无法满足运行的要求。从此意义上说,通过逆向的求解算法,DeST着重研究系统的可控制性,即:
①该设备能否通过某种控制方式满足要求?
②如果可以,该设备的最佳运行效果是什么?
通过校核回答以上两个问题后,设计人员可以进一步研究具体的控制方法,并通过与最佳的运行效果进行比较以确定控制方法的优劣。
5、DeST的用户界面DeST在WINDOWS95/98/NT下运行。
所有的模块都集成到CABD中。CABD是一个基于AutoCAD R14开发的用户界面。用户在此界面上进行建筑物的描述,通过选单调用其它模拟模块,与建筑物相关的各种数据(材料、几何尺寸、内扰等)通过数据库接口与CABD相连。
各种模块以ActiveX、DLLs通讯ARX的形式集成在一起,使得DeST成为一个高度集成化的软件工具,其目的是最大限度地减少用户花费在输入数据的时间,让设计人员将注意力集中在分析模拟结果、比较方案等创造性的工作中。所有的模拟结果以纯文本的格式存储,用户可以很方便地使用其它数据处理工具(如EXCEL)进行整理和分析。通过一定的实践,当用户能够熟练地使用DeST的界面后,准备数据以及运行程序所消耗的时间大概是分析所需要的时候的1/4或者更少。
6、DeST能够解决的问题下面用两个实例来演示如何采用DeST 设计的不同阶段进行分析。
其一是ANNEX30案例1中1个9层的办公楼,该楼位于德国,在模拟时采用了比利时的室外气象参数。设计要求房间温度全年控制在22~26℃,相对湿度必须满足40%~60%的范围。该案例的详细数据参阅文献[10].图8该建筑的标准层平面图。另案例是位于天津的一个商业建筑。
6.1 初步设计阶段
在本阶段,通过DeST计算出不同朝向下各房间逐时的基础室温,对该建筑物的不同朝向进行了比较。
从上述结果可以看出,朝向对于类似会议室1的房间没有太大的影响,而对于类似于休息室1的房间,则有显著的影响。朝东时该类房间要比朝南时温度偏高许多,这说明太阳辐射对于此类房间是一个很重要的影响因素,通过此比较可对建筑的最初设计提供参考。
6.2 方案设计:水系统类型比较
在每一种控制精度下,DeST对该楼进行了全年的模拟,计算出各月份需要冷热源同时提供冷水和热水的小时数。
从结果可以看出,当要求的精度较高时,风机盘管需要设计成四管制以满足各个时刻同时的冷热水要求,否则在过渡季中将有上千h不满足。如果要求的精度不高(如±3℃),则两管制的系统基本可以满足要求,在6个月的过渡季内,共有138h不能满足要求(3月13h,4月47 h,5月9 h以及秋季3个月中的69 h)。相应的冷热水供应时期也可以确定,在4,5月和10,11月只供应热水,在6~9月都供应冷水。
6.3 方案设计阶段:运行方式比较
在ANNEX30案例1中,对每1层的8个房间设计采用变风量系统。由于比利时夏季的室外温度并不高,因此新风的应用策略对空调机组能耗需求影响较大。本例中比较了两种新风策略,一种设定新风比从30%到100%可调,另一种设定新风比全年固定为30%.图12~16是采用DeST进行模拟后得到的结果。
在冬季,新风量越少越少省能;从5~9月,新风可利用的潜力很大,系统可以通过增大新风量来节省制冷能耗。由于比利时夏季的室外气温相对较低,通过充分利用新风,可以节省大约3/4的冷量。由于计算中采用了逆向的求解过程,避免了迭代,因此在进行此类方案模拟时,节省了计算时间,同时设计者也可通过冷量的需求对两种新风策略进行量化的比较。
6.4 详细设计阶段:风机的选择
此外,DeST也可以用于对空气处理室各部件进行各工况的样验,确定最佳的空气处理过程,分析冷冻机最优的运行模式等等。为实现详细的校核,关键在于充分利用已知阶段的数据(前一阶段的设计结果),通过模拟获得合理的全工况点,并将期用于下一阶段的设计。
7、结论
①与传统的模拟软件相比,DeST有用了不同的模拟方式。通过采用逆向的求解过程,对已知部分采用详细的模型而对未知部分采用"理想化"的部件,使得在设计的不同阶段可以采用相应的模拟分析手段,同时又依据各设计阶段之间的关系将各模块集成为一个整体。这使得DeST更接近于实际的设计过程,设计者可以采用DeST在设计的每一个阶段通过详细的模拟进行校核,从而保证设计的可靠性。
②基于全工况的设计是更可靠的设计。DeST在每一个设计阶段都计算出逐时的各项要求(风量、送风状态、水量等等),使得设计可以从传统单点设计拓展到全工况设计。
③在实际设计过程中,减少消耗在数据输入上的时间是非常重要的,DeST彩了各种集成技术并提供了良好的界面,因此可以很方便地应用到工程实际中。从1998年后半年至今,DeST已经成功地用于20余例实际工程分析。
8、参考文献
1 Markku Jokela, IEA-BCS ANNEX 30 Bring simulation into application. Subtask 2, Design Process Analysis, Final report.
2 ASHRAE. Air-conditioning system design manual. The ASHRAE 581-RP Projet Team: 2-23~2-25.
3 Reference Manual (2.1 A)。 LBL - 8706 - 11216, Lawrence Berkeley National Laboratory.
4 S A Klein. TRNSYS, A transient simulation program. ASHRAE Trans, 1976, V82, Part 1: 623~631.
5 D R Clark. HVACSIM,Building Systems and Equipment Simulation Program Reference Manual, 1985.
6 Jiang Yi. State space method for analysis of the thermal behavior of rooms and calculation of air conditioning load. ASHRAE Trans, 1981, V88: 122~132.
7 Tinazhen H, Yi Jiang. A new multi-zone model for the simulation of building thermal performance. Building and Environment 1997, 32 (2): 123~128.
8 Chen Feng, Jiang Yi. Define HVAC scheme by simulation. Procceeding of System Simulation in Buildings 1998, Liege.
9
10 Uwe Willan. Test case for data transfer (second proposal), ANNEX 30 documents, AN30-960325-11,WD-56,1996.
本文关键词:建筑环境设计模拟工具包DeST,由笔耕文化传播整理发布。
本文编号:190940
本文链接:https://www.wllwen.com/wenyilunwen/huanjingshejilunwen/190940.html