基于数据挖掘的艾滋病个性化治疗方案决策研究
本文选题:艾滋病 切入点:高效抗逆转录病毒治疗 出处:《首都医科大学》2017年硕士论文
【摘要】:目的:艾滋病是危害严重的一种传染性疾病。患者首次接受高效抗逆转录病毒治疗(highly active antiretroviral therapy,HAART)时的药物配伍方案是否合理是治疗成功与否的关键。由于艾滋病患者的个人身体素质不同、基线情况复杂、患病后病情进程不一、患者耐药性不同,选用某一药物配伍方案对这些患者进行治疗后,效果可能完全不同。本研究探讨利用数据挖掘方法分析艾滋病患者的多项指标与药物配伍方案之间的关系,制定艾滋病患者个性化治疗方案,从而避免治疗过程中的多次换药以及由此产生的耐药性、减轻药物治疗的毒副反应、提高患者生存质量、延长寿命。方法:收集721例首次接受HAART治疗的艾滋病患者治疗前以及治疗后多次随访时的年龄、身高、体重以及CD4+T淋巴细胞计数、CD8+T淋巴细胞计数、HIV病毒载量、白细胞计数、总淋巴细胞计数、血小板计数、血红蛋白、血肌酐、血尿素氮、血糖、谷草转氨酶、谷丙转氨酶、总胆红素数据,并对各种治疗方案中抗病毒药物的使用情况进行整理。对治疗后免疫重建良好患者的数据,分别通过基于患者相似性的聚类分析、基于案例推理和关联规则挖掘方法,确定患者的最佳治疗方案。最后对由三种方法得出的个性化治疗方案的准确性进行验证和比较。结果:(1)计算基于欧氏距离的患者相似性。利用聚类分析方法确定每一聚类中多数患者的用药方案为该类患者的最佳用药方案,由此推荐的患者用药方案与实际患者用药方案的一致率为67.3%。利用基于案例推理方法确定与某患者最相似的前10%患者的治疗方案作为该患者的推荐方案,分别以全部16项指标和7项核心指标计算相似性时,推荐方案与实际患者治疗方案的一致率分别为83.3%和86.0%。(2)经关联规则挖掘分析,得到用药情况与患者7个核心指标的相关关系,以及药物配伍情况之间对应关联。用药方案中包含依非韦伦的患者的最高支持度为0.02835,均高于用药方案中包含奈韦拉平的患者的最高支持度0.00622和包含洛匹那韦利托那韦的患者的最高支持度0.00138。留一法验证后的推荐一致率为71.4%。结论:利用数据挖掘技术中的聚类分析、基于案例推理和关联规则分析方法,能够针对艾滋病患者的人口学和实验室指标进行个性化用药方案推荐,其中基于案例推理方法的推荐准确性最高。研究证实了利用数据挖掘方法制定艾滋病患者个性化治疗方案的可行性和有效性,为患者个性化治疗方案的制定提供客观、科学的建议。
[Abstract]:Objective: AIDS is a serious infectious disease hazards. For the first time in patients receiving highly active antiretroviral therapy (highly active antiretroviral therapy, HAART) when the drug compatibility program is reasonable is the key to the success of treatment of AIDS patients. Due to personal physical fitness, the baseline situation is complex, the prevalence of disease after process, patients the resistance of these patients, treatment selection of a drug formula, the effect may be completely different. This study explores the use of data mining methods to analyze the relationship between a number of indicators of AIDS patients and drug combinations for patients, develop individualized treatment programs for AIDS, so as to avoid the repeated dressing treatment process and resulting resistance, reduce the side-effects of the drug treatment, improve the quality of survival, prolong the life of patients. Methods: collecting 721 cases of the first. By AIDS patients treated with HAART before and after treatment follow-up times of age, height, weight and CD4+T lymphocyte count, CD8+T lymphocyte count and HIV viral load, leukocyte count, total lymphocyte count, platelet count, hemoglobin, serum creatinine, blood urea nitrogen, blood glucose, aspartate aminotransferase, alanine aminotransferase, the total bilirubin data, and use of antiviral drugs in the treatment of a variety of sorting out. After the treatment of immune reconstitution in patients with good data, through the analysis of clustering similar patients based on case based reasoning and association rules mining method based on the best treatment plan were determined. Finally, verify and compare the accuracy of the individualized treatment plan obtained by the three methods. Results: (1) calculate the Euclidean distance similarity. Based on patients by using cluster analysis method to identify each cluster in the majority The medication regimen in patients with the best regimen for the patients, consistent rate of patients with medication and thus recommend medication for patients with the actual treatment of patients before 10% patients with the most similar as recommended the patient's case to determine the case based reasoning method using 67.3%., respectively, with all 16 indicators and 7 the core index of similarity calculation, consistency rate recommendation and treatment of actual patients were 83.3% and 86.0%. (2) by association rules analysis, get the correlation between the 7 core indicators and medication of patients, as well as the corresponding relationship between drug compatibility. Medication regimen included in the highest support of efavirenz with the degree of 0.02835, were higher than the highest support patients included nevirapine regimen in the highest support 0.00622 and contains the Tonave Wiley Los horse with a degree of 0.00138. After the verification of the method recommended the concordance rate was 71.4%. conclusion: using the technology of data mining and clustering analysis method, case based reasoning and association rules based on demographic and laboratory indicators for AIDS patients to recommend personalized medicine program, which recommended accuracy of case-based reasoning method based on maximum. Research has confirmed the use of data mining methods to develop the feasibility patients with personalized treatment of AIDS and effectiveness for patients with individualized treatment plan to provide objective and scientific advice.
【学位授予单位】:首都医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R512.91;TP311.13
【参考文献】
相关期刊论文 前10条
1 戴炳荣;王晓丽;李超;陈洁;施天行;;一种基于PCA-SVM的医疗卫生数据挖掘分类方法[J];计算机应用与软件;2016年08期
2 马丽琴;;艾滋病3种抗病毒治疗方案的疗效对比[J];菏泽医学专科学校学报;2015年01期
3 徐六妹;李莎茜;吴宝红;李桂英;陈素青;王辉;;对发生药物不良反应AIDS患者服药依从性的干预研究[J];中华护理杂志;2015年02期
4 李艳萍;和丽生;赵远;王莉;曹玺;邓家刚;;治疗艾滋病中药复方制剂研究现状与新思路[J];中草药;2014年03期
5 郑凤霞;古传运;;基于聚类分析和平滑法的艾滋病治疗方案研究[J];四川文理学院学报;2013年05期
6 王丹妮;李真;徐立然;郭会军;;李发枝治疗艾滋病皮肤瘙痒的配伍精要[J];中国中药杂志;2013年15期
7 张冰;马颖;李念念;赵烨;陈任;秦侠;胡志;;艾滋病病人药物治疗依从性现状及影响因素分析[J];中国卫生事业管理;2013年04期
8 王立婷;陈卉;;数据挖掘技术在艾滋病诊疗研究中的应用[J];数理医药学杂志;2013年01期
9 韩建超;徐艳;贺一;谢渝中;赵攀;黄成瑜;;数据挖掘在艾滋病病人CD_~4+T淋巴细胞与机会性感染关系的应用研究[J];中国艾滋病性病;2012年09期
10 余祖江;阚全程;何云;江河清;梁红霞;李太生;;某艾滋病治疗示范区3种抗病毒治疗方案疗效比较[J];郑州大学学报(医学版);2012年05期
,本文编号:1703082
本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/1703082.html