基于生物信息学技术筛选慢性乙型肝炎血液相关基因的研究
[Abstract]:Chronic hepatitis B (CHB) is a worldwide disease caused by hepatitis B virus (HBV), originally known as serum hepatitis. It has a high incidence in Asia, Africa and other developing countries, and is endemic in China. About one third of the world's people have been infected with CHB once in their lifetime, including asymptomatic hepatitis B virus carriers (HBsAg carriers). At present, 30 million hepatitis B patients in China are characterized by mild onset, which is more common in subclinical and chronic types. Persistent positive HBsAg patients without jaundice tend to be chronically transmitted mainly through blood, mother-to-child and sexual contact. Hepatitis liver fibrosis cirrhosis liver cancer is an evolutionary pathway of liver disease, which poses a considerable threat to the survival of patients. Chronic hepatitis caused by hepatitis B accounts for about 80% to 90% of the chronic hepatitis caused by various causes. Chronic hepatitis can last for several years, even decades. The disease is usually mild and does not develop. Any symptoms or obvious liver damage, but in some cases, persistent inflammation will slowly damage the liver, leading to cirrhosis and liver cancer, and liver cancer patients with poor prognosis, less treatment. At present, the use of hepatitis B vaccine prevention and control of hepatitis B is the main measure, although full vaccination of hepatitis B vaccine can make a large incidence of hepatitis B. However, due to the large base of hepatitis B patients in China, new hepatitis B patients are still emerging, and the economic and social development is not as good as our country, hepatitis B is still spreading. Therefore, to find effective treatment of hepatitis B is an urgent problem for medical staff and researchers.
As an important technology platform in the field of life science in the 21st century, gene chip is an effective method for screening differentially expressed genes with the advantages of high throughput and rapid measurement. Column fragments, which qualitatively and quantitatively analyze the composition of their mRNA population to describe the type and abundance of gene expression in a particular cell or tissue in a particular state, are called gene expression profiles. Gene expression profiles have been widely used in tumor genesis, early diagnosis, tumor genotyping, guiding treatment and evaluating prognosis. With the development of gene expression profiles, abundant, massive and complex genes have been produced. How to interpret the hybridization information of thousands of gene spots on the chip and reveal the life characteristics and laws contained therein has become the main "bottleneck" that restricts the application and development of gene chip technology.
Bioinformatics is a new frontier subject, originally known as genomic informatics, which is formed by the mutual penetration and highly intersection of modern biology and Medical Sciences (such as biochemistry, cell biology, developmental biology, genetics, genomics, physiology) and information science, computer science, biostatistics, mathematics and so on. Biochip research is based on the acquisition, processing, storage, management, retrieval, distribution, analysis and interpretation of biological experimental information by means of a combination of mathematical, computer science and biological tools to achieve understanding of the biological implications contained in the data. Therefore, in a narrow sense, bioinformatics is an interdisciplinary subject that applies computer science and mathematics to the acquisition, processing, storage, classification, retrieval and analysis of biomolecular information in order to understand the biological significance of these biomolecular information.
The main research contents of bioinformatics include the collection and management of biomolecular data, database search and sequence comparison, genome sequence information analysis, gene expression data analysis and processing, protein structure prediction, phylogenetic analysis, comparative genomics and so on. Several aspects: (1) acquisition, storage, management, processing, distribution and interpretation of genome-related information; (2) discovery and localization of new genes, functional annotations, regulatory mechanisms and network relationships; (3) analysis of information structure in non-coding regions; (4) study of biological evolution; (6) comparative study of complete genomes; (3) study on methods of genome information analysis _Functional genome related information analysis, including large-scale gene expression profile analysis related algorithms, software research, gene expression regulation network research, etc. Protein molecular spatial structure prediction, simulation and molecular design. _Drug design and application development research.
Bioinformatics is one of the Important Frontiers of life science and natural science, and also one of the core fields of Natural Science in the 21st century. Its research focuses mainly on genomics and proteomics. Functional genomics research that can be linked. Second, the shift from mapping-based gene isolation to sequence-based gene isolation. Third, the shift from the study of the causes of disease to the exploration of pathogenesis. Fourth, the shift from disease diagnosis to disease susceptibility research. Among them, functional genomics with the mapping and sequencing of the human genome project In cancer research, the common analytical methods include sequence alignment, statistical analysis, visual mapping, biological clustering, pathway analysis and promoter prediction. Data mining at the molecular level is used to illustrate the disease and to open up the study of molecular pathogenesis of cancer. Proteomics research focuses on the following aspects: (1) protein three-dimensional structure prediction. (2) prediction of protein interactions based on genomic context, such as gene neighbors, phylogenetic profiles, and bases. Rosetta stone method. (3) Bioinformatics is used to simulate and predict the structure of protein molecules, so as to provide a basis for drug molecular design.
The research contents are divided into three parts.
Part 1: Chronic hepatitis B gene expression profiling chip. Three blood samples from patients with chronic hepatitis B and three healthy volunteers were collected. Total RNA of leukocytes from patients and volunteers with chronic hepatitis B was extracted by one-step method using human Genome U133Plus2.0Array gene expression profiling chip of Affymetrix Company in the United States. After hybridization and strict preparation, the differentially expressed genes in patients with chronic hepatitis B and normal persons were analyzed by fluorescence scanner. The scanner results showed that 37542 genes were detected after careful analysis. The results are accurate and effective, and can be used for further analysis and utilization.
Part two: Screening of genes related to the pathogenesis of chronic hepatitis B. In this study, the microarray data of chronic hepatitis B gene expression profiles obtained in the first part were mined by using the microarray data analysis software BRB-Array Tools 4.2.1, and bioinformatics analysis was carried out to explore the way of screening tumor-related genes based on gene expression profiles. The microarray data were imported into BRB-Array Tools 4.2.1 for data screening, then differentially expressed genes were identified by hierarchical clustering, grouping analysis, GO analysis and KEGG pathway analysis. Interleukin signaling pathway, inflammatory chemokine and cytokine mediated signaling pathway, apoptosis signaling pathway and FAS signaling pathway.
Part 3: Protein-protein interaction network analysis of genes associated with chronic hepatitis B. For microarray data, obtaining differentially expressed genes is only the first step, but the transcriptional regulation of these differentially expressed genes and the interactions between the expressed proteins can not be analyzed from the gene expression profiles, and more importantly, how to do these In this chapter, we used GATHER, STRING, Cytoscape and other methods to analyze the biology of differentially expressed genes and their interaction network map. The results showed that the up-regulated genes were mainly enriched in cell adhesion, Wnt signaling pathway and endocrine system. The down-regulated genes are mostly enriched in the immune response, defense reflex, response to various stimuli in vivo and in vitro. To further understand the interaction network between different genes, the STRING online tool was used to identify the proteins encoded by 51 different genes related to chronic hepatitis B. Interactions between the proteins encoded by these genes were analyzed and found to be mainly concentrated in 11 proteins. Further analysis of the protein-protein interaction network constructed by Cytoscape revealed that six of the up-regulated genes encoded proteins were closely related to these genes: FLNC, MDK, TK1, THBS1, MAP. K12 and CD93., MDK, TKl and other genes are consistent with the results of STRING analysis, proving their importance again.
To sum up, on the basis of microarray experiment, this study used bioinformatics method to analyze the gene chip data of chronic hepatitis B. Using gene expression profiling data analysis tools, bioinformatics tools and literature mining tools, we carried out in-depth bioinformatics analysis of differentially related genes of chronic hepatitis B. Eleven abnormally expressed nodal genes and six proteins closely related to differentially expressed genes were successfully screened. These genes may play an important role in the pathogenesis of chronic hepatitis B. Further analysis of the extent and function of these genes will be the next step. In the aspect of biological pathways, several biological pathways are also found, which may be interrelated and interacted with each other, forming a complex organic signal network, and play a role in the pathogenesis of chronic hepatitis B. These results provide a further understanding of chronic hepatitis B. It provides meaningful exploration and evidence for molecular pathogenesis, drug development and treatment.
【学位授予单位】:南方医科大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:R512.62
【相似文献】
相关期刊论文 前10条
1 蒋与刚;刘静;;营养基因组学的研究进展[J];生理科学进展;2006年01期
2 孙淳;刘银坤;;多因素癌症诊断分类模型的建立和应用[J];生命的化学;2010年03期
3 韦安阳;罗新贵;杨勇;何书华;张涛;刘洋;;糖尿病性勃起功能障碍大鼠的基因表达谱芯片数据分析[J];南方医科大学学报;2011年04期
4 王斌会;生命科学中的信息学——生物信息学[J];医学信息;2000年10期
5 李伍举,应晓敏;BioSun:计算机辅助分子生物学实验设计的软件系统[J];军事医学科学院院刊;2004年05期
6 石鸥燕;杨文万;;基于Entrez系统利用生物信息数据库[J];医学信息;2007年02期
7 唐雪芳;贺修胜;;生物信息学策略鉴定新基因[J];现代生物医学进展;2008年07期
8 谭小丹;苏永春;李彬;;生物信息学课程教学探讨[J];山西医科大学学报(基础医学教育版);2008年01期
9 曹军;姚晓峰;仲来福;;生物信息学在预防医学教学中的地位和作用[J];山西医科大学学报(基础医学教育版);2008年02期
10 顾敏;曹永忠;刘秀梵;;生物信息学在A型流感病毒研究中的应用[J];病毒学报;2011年03期
相关会议论文 前10条
1 李媛;崔尚金;李建伟;于康震;;分子生态学与生物信息学[A];中国畜牧兽医学会禽病学分会第十一次学术研讨会论文集[C];2002年
2 陆文聪;钮冰;;基于数据挖掘的生物信息学研究进展[A];中国化学会第27届学术年会第15分会场摘要集[C];2010年
3 陈婷婷;郭婷婷;李林;安冬;;基于生物信息学的功能蛋白基因序列分类研究[A];2011年全国通信安全学术会议论文集[C];2011年
4 唐翠兰;陈智;;α防御素在慢性乙型肝炎和无症状HBV携带者之间的差异表达[A];传染病诊治高峰论坛暨2007年浙江省感染病学、肝病学学术年会论文汇编[C];2007年
5 卢学春;杨波;朱宏丽;姚善谦;;采用生物信息学方法优化依硫磷酸联合方案治疗MDS的应用研究[A];中国科协海峡两岸学术研讨会——2008血液肿瘤论坛会议会编[C];2008年
6 阮林;何颖;邹泽红;傅意玲;陈惠芳;陶爱林;;外源蛋白过敏原性生物信息学评价[A];中华医学会2010年全国变态反应学术会议暨中欧变态反应高峰论坛参会指南/论文汇编[C];2010年
7 冯文龙;赵清杰;;基于遗传算法的DNA多序列比对问题[A];2007年中国智能自动化会议论文集[C];2007年
8 康晓东;;生物信息学及其研究对象[A];2003年全国医学影像技术学术会议论文汇编[C];2003年
9 王智宇;童强松;曾甫清;刘媛;顾朝辉;郑丽端;蔡嘉斌;蒋国松;;小鼠睾丸特异性基因TSEG-4的克隆及表达分析[A];第十五届全国泌尿外科学术会议论文集[C];2008年
10 朱云平;刘湘军;魏丽萍;李亦学;;肝脏蛋白质组的生物信息学研究[A];中国蛋白质组学第三届学术大会论文摘要[C];2005年
相关重要报纸文章 前10条
1 本报记者 李恩青;生物信息学:促动BT与IT双赢[N];中国高新技术产业导报;2001年
2 刘义;生物信息学产业浮出水面[N];中国高新技术产业导报;2000年
3 英潮;生物信息学演绎“变脸”[N];中药报;2002年
4 中科院院士 强伯勤;生物信息学蕴有巨大效益[N];光明日报;2002年
5 白毅;加强生物信息学建设推动人类基因组研究[N];中国医药报;2002年
6 周颖;李梢:生物信息学为证候研究提供新视角[N];中国中医药报;2006年
7 中国科学院院士 张春霆 郝柏林;生物信息学孕育大产业[N];经济日报;2000年
8 刘丽丽;高性能计算为生物信息学加速[N];计算机世界;2007年
9 严飞;生物信息学 新世纪的新科学[N];大众科技报;2002年
10 张亚东;“交点”上的舞蹈[N];计算机世界;2002年
相关博士学位论文 前10条
1 张敏;生物信息学中多序列比对等算法的研究[D];大连理工大学;2005年
2 曾智勇;猪呼肠孤病毒SC-A株的分离鉴定及全基因组cDNA文库的构建和分子遗传特征分析[D];四川农业大学;2006年
3 肖庆;硬粒小麦硒蛋白的生物信息学研究[D];华中科技大学;2008年
4 刘太岗;机器学习方法在生物信息学中的应用[D];大连理工大学;2010年
5 张革新;α-淀粉酶性能与结构关系的生物信息学研究[D];江南大学;2005年
6 李艳芸;HLA-DRB1基因编码区SNPs的分析及其与宫颈癌的相关性研究[D];天津医科大学;2006年
7 童庆;面向基因预测的信息处理方法研究[D];中国科学技术大学;2006年
8 刘立芳;生物信息学中的多序列比对与模体识别问题研究[D];西安电子科技大学;2006年
9 郭雨珍;蛋白质结构预测和比较的优化研究[D];大连理工大学;2007年
10 熊峗;生物序列模式挖掘与聚类研究[D];复旦大学;2007年
相关硕士学位论文 前10条
1 胡f;基于生物信息学技术筛选慢性乙型肝炎血液相关基因的研究[D];南方医科大学;2013年
2 潘菁;中国西南地区人群中IL-10-592和IFNAR1-17470多态性与慢性乙型肝炎易感性的相关性分析[D];重庆医科大学;2011年
3 崔明芳;Tim-3基因多态性与HBV感染转归的相关性研究[D];安徽医科大学;2011年
4 夏淑林;CD24基因多态性与慢性HBV感染的遗传易感性研究[D];安徽医科大学;2011年
5 辛晓丽;慢性乙型肝炎肝组织学变化及其与血清生化和纤维化等指标的关系[D];大连医科大学;2010年
6 李薇;乙肝净方治疗应用核苷(酸)类药物停药复发的慢性乙型肝炎临床观察[D];湖北中医药大学;2010年
7 李文聪;慢性乙型肝炎优化治疗方案的临床研究[D];河北医科大学;2011年
8 刘琦;HBV基因型及前C区变异与慢性乙型肝炎病情关系研究[D];重庆医科大学;2011年
9 厉晶萍;慢性乙型肝炎肝肾阴虚型的理法方药研究[D];湖北中医学院;2004年
10 姚红梅;PI3K/PKB信号通路在慢性乙型肝炎患者外周血单个核细胞凋亡中的作用[D];河北医科大学;2011年
,本文编号:2192464
本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/2192464.html