差分自回归移动平均与广义回归神经网络组合模型在丙型肝炎月发病率中的预测应用
[Abstract]:Objective to explore the effect and application prospect of differential autoregressive moving average (ARIMA) model combined with generalized regression neural network (GRNN) model in predicting the monthly incidence of hepatitis C. Methods from May 2015 to May 2016, the monthly incidence data of hepatitis C from 2004 to 2014 and the population data of the same period published by Shandong Bureau of Statistics were selected. Based on the monthly incidence data of hepatitis C in Shandong Province from 2004 to 2014, the ARIMA model was constructed to verify the fitting accuracy and extrapolate prediction, and the fitting value of ARIMA model was taken as the input of GRNN model and the actual value was taken as the output of GRNN model to train and predict the samples. To compare the predictive effect of simple ARIMA model and ARIMA-GRNN combination model in the monthly incidence of hepatitis C. Results the average annual incidence of hepatitis C in Shandong Province from 2004 to 2014 was 17.28 / 100 000, and showed an increasing trend with the passage of time. The results are as follows: 1) the incidence of hepatitis C in Shandong Province in 2014 is basically consistent with the actual incidence, falling within 95% confidence interval, and the fitting effect is good. The fitting value of ARIMA model was taken as the input of GRNN model, the actual value of monthly incidence of hepatitis C was taken as the output of GRNN model, and the optimal smoothing factor 0.12 training model was selected. The average error rate of ARIMA model and ARIMA-GRNN combination model is 16.8715.30, respectively. The average absolute error (MAE) is 0.170.09, and the average absolute percent error (MAPE) is 1.18 ~ 0.35. The determination coefficient (R _ (2) is 0.53 ~ (0.60), the average absolute error (MAE) is 0.17 ~ (0.09), respectively. Conclusion the ARIMA-GRNN combination model is superior to the simple ARIMA model in fitting and predicting the incidence of hepatitis C in Shandong province. It has a higher fitting precision and has a broad application prospect. It has some practical significance for the prediction of the epidemic situation.
【作者单位】: 潍坊医学院公共卫生与管理学院卫生统计学教研室;
【基金】:“健康山东”重大社会风险预测与治理协同创新中心资助课题(XT-1402001)
【分类号】:R512.63
【参考文献】
相关期刊论文 前7条
1 胡晓媛;吴娟;孙庆文;沙琨;王玲玲;李敏;;ARIMA模型与GRNN模型对肺结核发病率预测的对比研究[J];第二军医大学学报;2016年01期
2 吴伟;郭军巧;安淑一;关鹏;周宝森;;应用ARIMA-GRNN模型对肾综合征出血热发病率时间序列数据的预测研究[J];中国卫生统计;2015年02期
3 武海波;周紫霄;黄奕祥;;2004-2011年中国丙型病毒性肝炎流行病学特征分析[J];现代预防医学;2015年07期
4 姜超;刘文东;胡建利;朱叶飞;鲍昌俊;汤奋扬;彭志行;陈峰;;丙肝疫情3种不同疾病预测预警方法比较[J];中国公共卫生;2015年04期
5 吴昊澄;王臻;何凡;孙继民;曾蓓蓓;鲁琴宝;刘碧瑶;赵艳荣;;基于GM(1,1)-GRNN组合模型的肾综合征出血热发病率预测[J];中国媒介生物学及控制杂志;2012年04期
6 韩琴;苏虹;王忱诚;单晓伟;常微微;徐志伟;王静;韩红梅;;ARIMA模型与GRNN模型对性病发病率的预测研究[J];现代预防医学;2012年06期
7 朱玉;夏结来;王静;;单纯ARIMA模型和ARIMA-GRNN组合模型在猩红热发病率中的预测效果比较[J];中华流行病学杂志;2009年09期
相关博士学位论文 前1条
1 严薇荣;传染病预警指标体系及三种预测模型的研究[D];华中科技大学;2008年
相关硕士学位论文 前3条
1 朱玉;单纯ARIMA模型和ARIMA-GRNN组合模型在猩红热月发病率中的预测效果比较[D];安徽医科大学;2011年
2 任茹香;基于GRNN的变权重组合预测模型在传染病发病率预测中的应用[D];浙江大学;2011年
3 王平;三种预测模型在主要传染病发病率预测中的应用[D];浙江大学;2010年
【共引文献】
相关期刊论文 前10条
1 李文华;杨亚涛;曾年华;;马尔可夫链在南方某部队肺结核发病趋势预测分析中的应用[J];华南国防医学杂志;2017年05期
2 马晓梅;刘颖;杨梦利;闫国立;徐学琴;王瑾瑾;郗园林;段广才;;手足口病月发病率ARIMA乘积季节模型预测探讨[J];现代预防医学;2017年09期
3 廖如s,
本文编号:2304144
本文链接:https://www.wllwen.com/yixuelunwen/chuanranbingxuelunwen/2304144.html