当前位置:主页 > 医学论文 > 畜牧兽医论文 >

稀有变异关联分析研究进展及其在畜禽中的应用展望

发布时间:2018-05-20 04:26

  本文选题:稀有变异关联分析 + 极端表型抽样 ; 参考:《畜牧兽医学报》2017年07期


【摘要】:在过去十年里,全基因组关联分析成功鉴定了数以千计的常见变异与常见疾病(性状)的关联。尽管如此,缺失遗传力的问题逐渐引起了广泛关注。由于GWAS的目标是鉴定常见变异与表型的关联,稀有变异成为解释缺失遗传力的一个重要答案。随着测序技术的发展,人们得以研究稀有变异与复杂疾病(性状)的关联。一系列的稀有变异关联分析(RVAS)方法被提出并应用于人类复杂疾病中,然而在畜禽上鲜有研究。本文首先综述了RVAS中具有代表性的测序核关联检验(SKAT)及其家族;其后,总结了两种在稀有变异中常用的提高效力的方法:极端表型抽样和荟萃分析;然后,探讨了使用芯片数据研究RVAS的方法:基因型填充和稀有单倍型关联分析;最后展望了稀有变异关联分析在畜禽上的应用前景。
[Abstract]:Over the past decade, genome-wide association analysis has successfully identified thousands of common mutations associated with common diseases (traits). Nevertheless, the issue of lack of heritability has gradually attracted widespread attention. Since the objective of GWAS is to identify the association between common variations and phenotypes, rare variations are an important answer to explain the heritability of missing genes. With the development of sequencing technology, it has been possible to study the association between rare variation and complex diseases (traits). A series of rare variant association analysis (RVASs) methods have been proposed and applied to complex human diseases, but few studies have been carried out on livestock and poultry. In this paper, we first review the typical nucleotide sequencing association test (SKATT) and its family in RVAS, and then summarize two common methods to improve the efficiency of rare variation: extreme phenotypic sampling and meta-analysis. The methods of using chip data to study RVAS were discussed, including genotype filling and rare haplotype association analysis. Finally, the prospect of rare variant association analysis in livestock and poultry was prospected.
【作者单位】: 中国农业科学院北京畜牧兽医研究所;福建农林大学动物科学学院;
【基金】:国家自然科学基金(31472079)
【分类号】:S813

【参考文献】

相关期刊论文 前1条

1 梁融;张俊国;卜涛;刘丽;李丽霞;张敏;郜艳晖;;稀有变异的关联性研究统计方法[J];中华流行病学杂志;2015年08期

【共引文献】

相关期刊论文 前1条

1 苗健;常天鹏;史新平;夏江威;高会江;李俊雅;;稀有变异关联分析研究进展及其在畜禽中的应用展望[J];畜牧兽医学报;2017年07期



本文编号:1913193

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/1913193.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户27b82***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com