当前位置:主页 > 医学论文 > 畜牧兽医论文 >

沙门菌的分离鉴定及其氟苯尼考耐药机制的研究

发布时间:2018-08-13 16:07
【摘要】:沙门菌(Salmonella)可以通过污染食物感染人和动物,引起多种人和动物的急性或慢性传染病,是一种在公共卫生学上具有重要意义的人畜共患病原菌。在世界各地的食物中毒病例中,沙门菌引起的中毒病例占首位或第二位,严重威胁着人类的身体健康和畜牧业的健康发展。目前许多发达国家诸如美国都已建立了相对完善的沙门菌流行病学监测和耐药监控体系,流行病学数据较为丰富,同时也开展了较深入的耐药机制研究,而我国在这方面的研究还比较滞后。为了了解动物沙门菌的流行情况和药物敏感性,以及对氟苯尼考的耐药机制。本研究对临床上疑似沙门菌病的病料进行病原分离和细菌的多重PCR鉴定,选取临床分离株S101022、0605E2-H,并针对floR、 AcrB两个耐药基因,采用λ-Red同源重组法构建相应的基因缺失株,初步探讨了这两个耐药基因与氟苯尼考耐药的关系,为进一步深入研究沙门菌氟苯尼考耐药的分子机制奠定了基础。1.沙门菌的分离鉴定及耐药性分析对临床上疑似沙门菌病的病料进行病原分离和细菌的多重PCR鉴定,共分离到沙门菌61株,其中肠炎沙门菌10株,鸡白痢沙门菌12株,鼠伤寒沙门菌39株,月份分布显示,7-8月分离率最高。K-B法测定分离株对23种抗菌药物的敏感性以及部分药物的MIC结果显示,动物源沙门菌耐药性总体呈现上升趋势,所有菌株对青霉素、红霉素、万古霉素耐药,90.16%对6种及其以上抗菌药耐药。选择氟苯尼考耐药菌株扩增floR、fexA、fexB等基因,结果显示,8株携带floR,其他基因未检测到,对克隆的floR基因的核苷酸序列进行分析,与Genbank中已报道动物源性沙门菌floR基因核苷酸序列比较,发现同源性在99.3%-100%,氨基酸序列的同源性在99.2%-100%,分别在147、160、228、293位发生了氨基酸的替代。2.氟苯尼考相关耐药基因缺失株的构建及其耐药表达研究选取都柏林沙门菌S101022、鼠伤寒沙门菌0605E2-H,针对不同耐药基因floR、 AcrB,使用λ-Red同源重组法,构建6个耐药基因缺失株,PCR扩增以及突变株序列测序结果显示6个基因突变株构建成功。采用第一章中的方法测定相应缺失株的药物敏感性,其结果显示缺失株对氟苯尼考的耐药性成功丢失。细菌的生长曲线测定结果显示,双基因缺失株的生长速度略慢于野生株,其余菌株的生长速度并无明显差异。采用Q-PCR方法对floR.AcrB耐药基因的表达进行了测量,结果显示,floR缺失株无论是否氟苯尼考的选择压力下,AcrB的表达量会呈现不同程度的增加,添加CCCP后,AcrB的表达量并没有显著差异;而AcrB缺失株在CCCP的选择性压力下,floR的表达量却有了一定程度的升高,证明AcrB的表达对外界环境改变(尤其是抗生素)有着相关程度的依赖性,而正常环境下floR的表达并没有显著的差异;AcrB和floR在氟苯尼考耐药过程中的表达差异并不明显。3.HPLC法测定氟苯尼考在耐药和基因缺失株内聚集的研究采用HPLC法测定野生株S101022、0605E2-H和基因缺失株S101022△floR. S101022△AcrB.0605E2-H△f1oR、0605E2-H△AcrB摄取氟苯尼考的差异,结果显示,与floR和AcrB基因缺失株相比,耐药的野生株S101022和0605E2-H对氟苯尼考的摄取量明显较少,而在加入氟苯尼考的10 min,野生株的氟苯尼考的积聚量约是双基因缺失株的1/2。而在耐药过程中加入CCCP和PAβN(一种外排泵抑制剂),发现CCCP对△AcrB氟苯尼考的积聚量影响较大,对△floR影响并不显著,而PAβN对△AcrB氟苯尼考的积聚量影响较小,而对△floR影响及其显著,可见CCCP可能主要针对的是floR基因介导的泵出系统,而PAβN主要针对的是AcrB介导的泵出系统,两者对氟苯尼考的能量抑制存在特异性,且在氟苯尼考的耐药过程中均发挥了一定的作用。
[Abstract]:Salmonella can infect humans and animals by contaminating food, causing acute or chronic infectious diseases in many humans and animals. Salmonella is a zoonotic pathogen of great importance in public health. At present, many developed countries, such as the United States, have established relatively perfect epidemiological surveillance and drug resistance surveillance systems for Salmonella. The epidemiological data are relatively rich, and at the same time, a deeper study on drug resistance mechanism has been carried out. Epidemiology and drug susceptibility of Salmonella in animals, and the mechanism of resistance to florfenicol. In this study, pathogen isolation and multiplex PCR identification of clinical suspected Salmonella were carried out. Clinical isolates S101022,0605E2-H were selected, and two resistant genes, floR and AcrB, were constructed by lambda-Red homologous recombination method. The relationship between the two drug-resistant genes and the resistance of flubenicol was preliminarily discussed, which laid a foundation for further study on the molecular mechanism of flubenicol resistance of Salmonella. 1. Isolation and identification of Salmonella and analysis of drug resistance were carried out to isolate pathogens from clinical suspected Salmonella diseases and identify bacteria by multiplex PCR. Sixty-one strains of Salmonella were isolated, including 10 strains of Salmonella enteritidis, 12 strains of Salmonella pullorum and 39 strains of Salmonella typhimurium. The monthly distribution showed that the isolation rate was the highest from July to August. Sensitivity of the isolates to 23 antimicrobial agents and MIC of some antimicrobial agents were determined by K-B method. Resistance to penicillin, erythromycin and vancomycin was 90.16%. The floR, fexA and fexB genes were amplified from flufenicol-resistant strains. The results showed that 8 strains carried floR and other genes were not detected. The nucleotide sequence of the cloned floR gene was analyzed and compared with the floR gene of Salmonella from animal origin reported in Genbank. Nucleotide sequence comparison showed that the homology was 99.3%-100%, amino acid sequence homology was 99.2%-100%, and amino acid substitution occurred at 147,160,228,293 sites respectively. Six resistant gene deletion strains were constructed by lambda-Red homologous recombination. PCR amplification and sequencing of the mutants showed that the mutants were successfully constructed. Drug susceptibility of the corresponding deleted strains was determined by the method in Chapter 1. The results showed that the resistance of the deleted strains to florfenicol was successfully lost. The results of growth curve showed that the growth rate of the two-gene deleted strains was slightly slower than that of the wild strains, and there was no significant difference in the growth rate of the other strains. The expression of AcrB did not differ significantly after CCCP addition, but the expression of floR in AcrB deletion strains increased to a certain extent under CCCP selective pressure, which proved that the expression of AcrB was dependent on environmental changes (especially antibiotics), while the expression of floR in normal environment was not significant. The difference of expression of AcrB and floR in the process of resistance to florfenicol was not significant. 3. Determination of florfenicol concentration in drug-resistant and gene-deleted strains by HPLC. Determination of the difference of uptake of florfenicol by wild strain S101022,0605E2-H and gene-deleted strain S101022 Delta floR.S101022 Delta AcrB.0605E2-H Delta AcrB by HPLC The results showed that compared with floR and ACrB gene deletion strains, the uptake of florfenicol in resistant wild strains S10102 2 and 0605E2-H was significantly lower, while the accumulation of florfenicol in wild strains was about 1/2 of that in double gene deletion strains at 10 min after adding florfenicol. At present, CCCP has a great influence on the accumulation of AcrB flubenicol, but not on floR. PA beta N has a small effect on the accumulation of AcrB flubenicol, but has a significant effect on floR. It is clear that CCCP may mainly aim at the floR gene-mediated pumping system, while PA beta N mainly aims at the AcrB-mediated pumping system. The energy inhibition of florfenicol is specific and plays a certain role in the process of resistance to florfenicol.
【学位授予单位】:扬州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S852.61

【相似文献】

相关期刊论文 前10条

1 朱丽娜;罗薇;刘内生;刘群;;养殖基地斑头雁沙门菌的耐药性分析[J];中国家禽;2010年15期

2 廖成水;程相朝;吴庭才;张春杰;李银聚;王晓利;胡阿勇;;河南省鸡源沙门菌新近流行株的分离鉴定及其耐药性分析[J];中国家禽;2010年17期

3 赵寒;熊鸿燕;李勤;肖邦忠;李志锋;王文斟;;2007-2009年重庆市沙门菌监测[J];热带医学杂志;2010年10期

4 林居纯;舒刚;张焕容;覃春红;马驰;魏峰;钟卿青;黄琳;;鸡源沙门菌的鉴定及耐药性检测[J];中国家禽;2011年16期

5 唐攀;崔恩慧;刘万华;任娟娟;武宁;邱渊皓;王晶钰;;鸡源沙门菌PFGE分型及耐药性研究[J];动物医学进展;2013年11期

6 姚丰华;张钰;朱国强;;沙门菌Ⅵ型分泌系统研究进展[J];中国预防兽医学报;2014年06期

7 刘茜;;猪肝沙门菌的分离鉴定及耐药性分析[J];生物技术通报;2010年05期

8 李郁;魏建忠;张玮;王强;谢玉洁;王非;;致病性沙门菌的耐药表型分析及其耐药基因检测[J];中国家禽;2008年14期

9 钱明珠;王申锋;许兰菊;朱金凤;尹凤阁;;河南鸡源沙门菌的分离鉴定及其耐药性分析[J];畜牧与兽医;2012年08期

10 孙化露;姜逸;李树纯;陈素娟;张华;张晓平;田艳娜;吴艳涛;焦库华;彭大新;;动物源性沙门菌的血清型、生物被膜形成能力和耐药性分析[J];畜牧兽医学报;2012年10期

相关会议论文 前2条

1 马兴树;朱美霞;王斌;米青荣;韩改英;王建强;;种鹌鹑沙门菌病净化措施及配套技术研究[A];京津冀畜牧兽医科技创新交流会暨新思想、新观点、新方法论坛论文集[C];2008年

2 马健;卢晓辉;刘海林;朱方兵;;豫北地区鸡沙门菌病流行病学调查[A];中国畜牧兽医学会禽病学分会第十四次学术研讨会论文集[C];2008年

相关重要报纸文章 前1条

1 周欣;美花生酱问题敲响沙门菌食物中毒警钟[N];中国医药报;2007年

相关博士学位论文 前3条

1 张秀芹;饲料中沙门菌快速检测方法的建立及其分离株的耐药性与致病性分析[D];吉林大学;2014年

2 加春生;哈尔滨地区部分猪场沙门菌耐药性调查与防治[D];东北农业大学;2015年

3 冯晔;沙门菌各血清型基因组序列和致病性的比较[D];浙江大学;2009年

相关硕士学位论文 前10条

1 张杰;鸡沙门菌病抗体间接ELISA检测方法的建立[D];华中农业大学;2013年

2 魏立雯;沙门菌反向线性探针杂交检测方法的建立及应用[D];重庆医科大学;2013年

3 刘仲义;不同来源沙门菌多位点序列分型及药物敏感性分析[D];扬州大学;2012年

4 杨燕;浙江省沙门菌的分子分型和流行病学研究[D];浙江大学;2014年

5 董睿;鸡蛋源沙门菌的分离鉴定及其耐药基因和毒力基因的检测[D];西北农林科技大学;2012年

6 赵飞;鸡肉中沙门菌的定量检测及分离株CRISPRS分子亚分型分析[D];扬州大学;2013年

7 赵婧;咸阳某奶牛场犊牛沙门菌性腹泻的实验室诊断及综合防治[D];西北农林科技大学;2015年

8 李茂辉;吉林省部分规模化猪场临床健康猪群沙门菌流行病学调查及耐药性分析[D];吉林农业大学;2014年

9 李昱辰;猪肉生产链中沙门菌的分离鉴定、耐药性分析及分子分型[D];扬州大学;2014年

10 刘蓓蓓;沙门菌PCR检测方法的建立及其初步应用[D];扬州大学;2009年



本文编号:2181495

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2181495.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6ce40***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com