α-细辛醚开启斑马鱼血脑屏障作用机制及其生物安全性的研究
[Abstract]:The effect of alpha-asarone on the structure of blood brain barrier (BBB) and the expression of tight junction protein family Claudin, occludin, ZO, JAM genes in zebrafish was studied in order to elucidate the mechanism of alpha-asarone opening blood brain barrier, and to evaluate the biological safety of alpha-asarone, mainly on the reproductive toxicity and the expression of JAM genes in zebrafish. The embryo development toxicity was studied to lay a theoretical foundation for the clinical application of alpha-asarone in human and livestock.Dextran Texas Red was injected into the heart of juvenile zebrafish by cardiac injection and then immersed in alpha-asarone solution. Macromolecular fluorescent substances entered the brain through the blood-brain barrier (BBB), and the ultrastructure of the BBB was observed by transmission electron microscopy (TEM) after the adult zebrafish were injected with alpha-asarone via abdominal cavity. Real-time quantitative PCR (RT-qPCR) was used to study the effects of alpha-asarone on the expression and timeliness of Claudin, ZO, occludin and JAM genes in zebrafish tightly junction proteins; the biological safety of alpha-asarone on embryonic development toxicity and the insemination of 3 h (Hours post-ferilization, hpf) zebrafish embryos into different concentrations. The morphological changes of embryos at 24 hpf, 48 hpf, 72 HPF and 96 HPF were observed. The frequency of spontaneous twitching, hatching rate, heart rate, deformity rate and mortality of zebrafish embryos were measured, including pericardial edema, spinal curvature, tail curvature, yolk, etc. The effect of alpha-asarone on SEPN1 gene expression in zebrafish was detected by RT-qPCR. The effect of alpha-asarone on movement pattern and ability of juvenile zebrafish was evaluated by Noldus, a zebrafish behavioral system. After soaking in culture water and alpha-asarone ether, it was found that the blood vessels of zebrafish were blurred after soaking in alpha-asarone ether for 30 minutes, and a small amount of fluorescent substances were exuded. After soaking in alpha-asarone for 60 minutes, the blood vessels of zebrafish became more blurred, indicating that a large amount of fluorescent substances had exuded from the blood vessels, but not seen in the control group. The results of electron microscopy showed that after administration of alpha-asarone, the endothelial cells contracted slightly, the basement membrane of BBB expanded and ruptured, and the tight junction loosened. After intraperitoneal injection of alpha-asarone for one hour, most of the Claudin family genes, such as Claudin-19, -k, -j, -5a, -7a, -7b, -a, -h, -11a, were down-regulated. Claudin-5b, -11b was up-regulated. Claudin-2 was not up-regulated. Other family genes such as JAM, -2A, -2B, -3A, o, 3B, etc. After intraperitoneal injection of alpha-asarone, Claudin 5A was down-regulated most obviously at 1 h, and recovered gradually at 2 h, and returned to normal level at 8 h. After exposing zebrafish embryos to different concentrations of alpha-asarone, the number of spontaneous twitches of 24hpf zebrafish decreased. The results showed that the hatching rate and mortality of juvenile zebrafish at 96 HPF were significantly different, and the movement of juvenile zebrafish was inhibited with the increase of concentration of alpha-asarone. Aromatic rehabilitative drugs can down-regulate the gene expression of claudin family, resulting in loose tight junction structure, destruction of basement membrane structure and shrinkage of endothelial cells, weakening the barrier function of blood brain barrier, thus opening the blood brain barrier and playing an enlightening role. Physiologically, it does not cause pathological damage to the brain. In terms of drug safety, high concentration of alpha-asarone has obvious toxic effect on zebrafish embryo development. It suggests that human and animal clinical use of alpha-asarone cautiously.
【学位授予单位】:内蒙古民族大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:S853.7
【相似文献】
相关期刊论文 前7条
1 陈洪流;赵静国;谢令德;王旭东;潘俊;陈思思;;细辛醚衍生物的合成及其杀虫活性研究[J];化学与生物工程;2009年08期
2 邱艳;宋旭红;黄衍章;;玉米象成虫对β-细辛醚中毒的行为反应及杀虫机理研究[J];中国粮油学报;2014年07期
3 王旭东;赵静国;谢令德;李政;宋萍;;α-细辛醚衍生物的合成研究[J];化学与生物工程;2010年05期
4 张静;冯岗;马志卿;冯俊涛;张兴;;细辛醚对6种农业害虫的杀虫活性[J];西北农林科技大学学报(自然科学版);2008年04期
5 王兴明,杨定明,王清成;顺2,4,5—三甲氧基苯丙烯的合成[J];西南工学院学报;1999年01期
6 张静;冯岗;马志卿;冯俊涛;张兴;;细辛醚对粘虫幼虫的毒力及几种重要酶系的影响[J];昆虫学报;2007年06期
7 ;[J];;年期
相关会议论文 前3条
1 徐敏;马伟斌;粱文权;;α-细辛醚大鼠、兔、人尸皮体外透皮释放比较[A];浙江省药剂学术会议论文集[C];2006年
2 徐敏;马伟斌;梁文权;;α-细辛醚贴剂的制备和皮肤刺激性考察[A];浙江省药剂学术会议论文集[C];2006年
3 魏立平;王文俊;吴玫涵;;石菖蒲挥发油中α-细辛醚、β-细辛醚血药浓度的同时测定[A];色谱分析在药物分析中的应用专题学术研讨会论文集[C];2004年
相关重要报纸文章 前2条
1 李延斌;菖蒲药理研究新进展[N];中国医药报;2004年
2 仲海亮;石菖蒲主要成分具抗癫痫功效[N];中国医药报;2006年
相关博士学位论文 前8条
1 陈奕芝;β-细辛醚对谷氨酸所致神经元损伤的保护作用[D];广州中医药大学;2007年
2 刘林;石菖蒲成分β-细辛醚减轻缺血再灌注脑损伤的自噬机理研究[D];广州中医药大学;2012年
3 张升;石菖蒲成分β-细辛醚对帕金森病模型大鼠作用的自噬机制研究[D];广州中医药大学;2014年
4 邱东鹰;β-细辛醚对气道副交感节前运动神经元突触传递的抑制作用[D];复旦大学;2012年
5 李菲;β-细辛醚靶向ROCK通路抗阿尔茨海默病神经突触损伤的分子机制[D];广州中医药大学;2015年
6 莫镇涛;β-细辛醚对缺糖缺氧PC12细胞自噬的影响[D];广州中医药大学;2012年
7 杨立彬;中药石菖蒲及其主要成分α-细辛醚抗幼鼠癫痫作用的实验研究[D];吉林大学;2004年
8 李志强;β-细辛醚对AD大鼠学习记忆的影响及血管保护机制研究[D];暨南大学;2010年
相关硕士学位论文 前10条
1 尚艳楠;α-细辛醚开启斑马鱼血脑屏障作用机制及其生物安全性的研究[D];内蒙古民族大学;2015年
2 王旭东;石菖蒲中α-细辛醚类衍生物的合成与杀虫活性研究[D];武汉工业学院;2010年
3 宋金凤;中药成分细辛醚的荧光性质与分析方法研究[D];河北师范大学;2012年
4 徐敏;α-细辛醚经皮给药贴剂的研究[D];浙江大学;2002年
5 吴争;α-细辛醚经皮给药系统的研究[D];浙江大学;2006年
6 石琛;石菖蒲有效单体β-细辛醚在家兔体内的药代动力学研究[D];广州中医药大学;2006年
7 陈洪流;细辛醚及其衍生物的合成与生物活性初步研究[D];武汉工业学院;2009年
8 魏立平;石菖蒲挥发油中β-细辛醚的药代动力学研究[D];中国人民解放军军事医学科学院;2003年
9 李成冲;石菖蒲活性成分β-细辛醚抗老年痴呆模型大鼠海马细胞凋亡作用及机制[D];佳木斯大学;2010年
10 王绮雯;β-细辛醚对体外培养心肌细胞缺血/再灌注损伤的保护作用[D];广州中医药大学;2007年
,本文编号:2195921
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/2195921.html