染病动物传染项的疫病动力学模型分析
发布时间:2021-11-26 13:07
基于已有的研究,考虑潜伏期时滞和已发现的染病动物仍传染,建立一个新的疫病传播动力学模型。首先计算模型的基本再生数R0,分析地方病平衡点的存在性;然后对模型平衡点的稳定性进行分析,发现检测出的染病动物如果不再传染,模型的平衡点是稳定的;最后通过数值模拟发现,当已发现的染病动物仍传染时,模型会出现周期震荡,这会显著影响动物疫病防控措施的制定。
【文章来源】:内蒙古师范大学学报(自然科学汉文版). 2020,49(06)
【文章页数】:7 页
【部分图文】:
无病平衡点E0和地方病平衡点E*1,E*2的数值模拟图
【参考文献】:
期刊论文
[1]基于疫病检测信息的布病动力学模型分析[J]. 乔瑞春,侯强,李有文. 数学的实践与认识. 2019(13)
[2]基于检测行为的布病传播动力学模型分析[J]. 南瑶瑶,侯强,杨晓峰. 数学的实践与认识. 2018(18)
本文编号:3520209
【文章来源】:内蒙古师范大学学报(自然科学汉文版). 2020,49(06)
【文章页数】:7 页
【部分图文】:
无病平衡点E0和地方病平衡点E*1,E*2的数值模拟图
【参考文献】:
期刊论文
[1]基于疫病检测信息的布病动力学模型分析[J]. 乔瑞春,侯强,李有文. 数学的实践与认识. 2019(13)
[2]基于检测行为的布病传播动力学模型分析[J]. 南瑶瑶,侯强,杨晓峰. 数学的实践与认识. 2018(18)
本文编号:3520209
本文链接:https://www.wllwen.com/yixuelunwen/dongwuyixue/3520209.html