当前位置:主页 > 医学论文 > 心血管论文 >

冠脉结合多次静脉移植间充质干细胞治疗慢性缺血性心脏病的实验研究

发布时间:2018-05-05 10:14

  本文选题:间充质干细胞 + 细胞移植 ; 参考:《中国人民解放军军事医学科学院》2015年硕士论文


【摘要】:缺血性心脏病(ischemic heart disease,IHD)是威胁人类健康的主要杀手之一,具有极高的致死率和致残率[1]。尽管多数患者能从经皮冠状动脉腔内血管成形术(percutaneous transluminal coronary angioplasty,PTCA)、冠状动脉搭桥手术(coronary artery bypass graft,CABG)及药物治疗中获益,但仍然有相当数量的慢性缺血性心脏病(chronic ischemic heart disease,CHD)患者,他们因为冠脉病变严重、弥漫等各种原因无法进行手术治疗,且药物治疗效果往往不理想[2]。这部分CHD患者目前缺乏有效的干预措施,临床上也被称作“无选择权”患者。干细胞研究的进展为这类患者带来了希望。近年来,大量基础[3,4]和临床研究[5,6]显示,干细胞移植可以减少心肌细胞凋亡,促进新生血管形成,改善心室重构,提高心功能,显示出良好的应用前景。其中间充质干细胞(mesenchymal stem cells,MSCs)因其来源广泛,操作简便,具有免疫豁免效应等优势而受到研究人员的广泛青睐。现有的研究表明,MSCs治疗急性心肌缺血安全有效。但MSCs在治疗慢性心肌缺血方面的研究尚少。目前,国内外尚未见到在大动物模型上研究联合移植MSCs治疗CHD的报道。MSCs有多种来源,现有的研究多采用骨髓来源间充质干细胞(bone marrow-derived mesenchymal stem cells,BM-MSCs)。但BM-MSCs具有取材有创伤,年龄较大供体的MSCs增殖能力有限等缺点[7,8]。因此,研究人员开始探讨多种其他来源MSCs治疗心脏病的可行性。其中脐带来源间充质干细胞(umbilical cord-derived mesenchymal stem cells,UC-MSCs)因其取材无创伤,无伦理限制,细胞增殖和分化能力强,能分泌多种促血管生成因子等优势,成为替代BM-MSCs的较为理想的细胞来源[9]。目前已经有大量采用UC-MSCs治疗多种疾病的临床前或临床研究报道,包括肝硬化[10]、糖尿病[11]、系统性红斑狼疮[12]、移植物抗宿主病(graft-versus-host disease,GVHD)[13]等,但在心脏病的研究方面尚处于起步阶段。目前尚未见到采用UC-MSCs治疗CHD的研究报道。因此,本研究拟建立猪慢性缺血性心脏病动物模型,通过冠脉结合两次静脉输注的方式移植异体猪骨髓来源间充质干细胞(pig bone marrow-derived mesenchymal stem cells,p BM-MSCs)和人脐带来源间充质干细胞(human umbilical cord-derived mesenchymal stem cells,h UC-MSCs)进行干预,采用冠脉造影、心脏超声、单光子发射计算机断层成像(single-photon emission computed tomography,SPECT)和病理组织学等方法综合评价骨髓和脐带来源MSCs移植对CHD的治疗作用,从而为今后的临床应用提供依据。本研究首先采用Ficoll密度梯度法分离p BM-MSCs,相差显微镜观察显示,p BM-MSCs呈梭形,旋涡状或鱼尾状生长。流式检测结果表明,p BM-MSCs表达CD44、CD29、CD90,而CD14、CD34、CD45、CD166、HLA-DR表达呈阴性。诱导分化实验发现,p BM-MSCs能够分化为脂肪细胞、成骨细胞、软骨细胞。然后我们采用酶消化法分离h UC-MSCs,相差显微镜下观察,细胞呈梭形,旋涡状或平行排列,流式检测结果显示,细胞表达CD29、CD44、CD73、CD90、CD105和HLA-ABC,而CD34、CD45、HLA-DR表达呈阴性。诱导分化结果显示,h UC-MSCs可向脂肪细胞、成骨细胞和软骨细胞的分化。最后我们着重探讨了p BM-MSCs和h UC-MSCs对慢性缺血性心脏病大动物模型的治疗作用。选取30只小型猪,将Ameroid动脉缩窄环置于猪左冠回旋支(left circumflex coronary artery,LCX)建立慢性缺血性心脏病动物模型,4周后通过冠脉造影和心电图对模型进行评价;存活的20只动物随机分为p BM-MSCs组(n=8)、h UC-MSCs组(n=6)和对照组(n=6),治疗组采用冠脉结合两次静脉输注的方式移植经过CM-Di I标记的p BM-MSCs和h UC-MSCs进行干预,对照组则输注生理盐水。细胞移植前和移植后4周,冠脉造影检测冠脉侧枝循环,心脏超声检测心功能和心脏结构指标,SPECT检测心肌血流灌注。动物处死后取心脏行2,3,5-氯化三苯基四氮唑(2,3,5-triphenyl-2H-tetrazolium chloride,TTC)染色计算梗死面积,并选取梗死边缘区的组织制备病理切片,检测心肌细胞纤维化、凋亡、新生血管形成等情况,并观察移植细胞的植入和转归。建模后4周,存活的20只猪冠脉造影显示LCX均完全闭塞,心电图可见Ⅰ、AVL和(或)Ⅱ、Ⅲ、AVF和(或)V4-V6导联ST段压低和(或)T波改变。细胞移植后4周,冠脉造影结果显示:对照组和细胞治疗组均有侧枝血管形成,但与治疗前相比,对照组Rentrop评分增加无统计学意义,而p BM-MSCs组和h UC-MSCs组结果则有显著差异(p0.01),表明细胞移植促进了侧枝循环的形成;与对照组相比,p BM-MSCs组和h UC-MSCs组侧枝血管计数结果有显著差异(P0.05),但两个细胞治疗组之间无明显差别。心电图结果表明,p BM-MSCs和h UC-MSCs移植组心率(heart rate,HR)较治疗前无明显变化,而对照组HR明显增加(P0.01)。心脏超声:细胞治疗组的左室射血分数(Left ventricular ejection fraction,LVEF)较治疗前均有升高,p BM-MSCs组从53.91%±6.72%升至58.19±7.10%(p0.05),h UC-MSCs组从56.12±2.86%升至61.32±3.23%(p0.05),而对照组的LVEF较治疗前下降;与对照组相比,细胞治疗组LVEF的升高具有显著差异(P0.05),但p BM-MSCs组与h UC-MSCs组间相比无差异;与对照组相比,两个细胞治疗组的梗死区收缩期室壁增厚率(systolic thickening fraction in the infarcted left ventricular wall,WTh F)升高均有统计学差异(P0.05);此外,对照组的左室收缩末期容积(left ventricular end-systolic volume,LVESV)和左室舒张末期容积(left ventricular end-diastolic volume,LVEDV)较治疗前均明显增大(P0.05),而p BM-MSCs组和h UC-MSCs组治疗前后未见明显改变。SPECT结果显示:对照组和细胞治疗组心肌血流灌注均较治疗前有所改善;但p BM-MSCs组(p0.01)和h UC-MSCs组(p0.05)改善较对照组明显,且二者之间无显著差异。病理组织学结果显示,TTC染色:p BM-MSCs组和h UC-MSCs组梗死面积分别为7.89±2.62%和8.35±1.88%,比对照组(14.52±4.85%)显著减小(p0.05);HE染色:细胞移植组炎性评分显著低于对照组(p0.05);Masson三色染色显示细胞移植组的胶原容积分数(collagen volume fraction,CVF)明显小于对照组(p0.05);血管计数:p BM-MSCs和h UC-MSCs移植组微血管密度显著高于对照组(p0.05);TUNEL(terminal deoxynucleotidyl transferase d UTP nick end labeling)法检测凋亡,p BM-MSCs组(11±3cells/100 cells)和h UC-MSCs组(13±4 cells/100cells)凋亡的心肌细胞数量明显少于对照组(24±3 cells/100 cells)(p0.01)。荧光显微镜下梗死边缘区可见有CM-Di I标记的细胞,免疫荧光染色显示p BM-MSCs组和h UC-MSCs组均可见移植后的MSCs部分分化为血管内皮细胞,未观察到其向心肌细胞分化。RT-q PCR显示,与对照组相比,p BM-MSCs组的促血管生成素(angiogenin,Ang)表达增高(p0.05),h UC-MSCs组的Ang(p0.01)和血管内皮生长因子(vascular endothelial growth factor,VEGF)(p0.05)表达增高,而白介素-6(interleukin-6,IL-6)、成纤维细胞生长因子(fibroblast growth factor,FGF)、胸腺肽β4(thymosin beta 4,Tβ4)的表达无显著改变。本研究成功分离培养了p BM-MSCs和h UC-MSCs;并将Ameroid动脉缩窄环置入猪LCX成功建立猪慢性缺血性心脏病模型;经冠脉结合两次静脉输注p BM-MSCs及h UC-MSCs治疗研究结果表明,p BM-MSCs及h UC-MSCs均能有效减少梗死面积,减轻炎症反应,减少心肌细胞凋亡和心肌纤维化,促进侧枝循环形成及血管新生,改善心肌血流灌注,改善心室重构,提高心功能,且两种细胞的治疗作用无显著差异。
[Abstract]:Ischemic heart disease (IHD) is one of the major killer of human health, with high mortality and disability rate [1]., although most patients can from percutaneous transluminal coronary angioplasty (percutaneous transluminal coronary angioplasty, PTCA), coronary artery bypass surgery (coronary artery) CABG) and the benefit of drug treatment, but there are still a considerable number of patients with chronic ischemic heart disease (chronic ischemic heart disease, CHD) who are unable to perform surgical treatment because of serious coronary lesions, diffuse and other reasons, and the effect of the drug treatment often fails to think of [2]., a part of the CHD patient currently lacking effective interventions. The bed is also known as "no choice". The progress of stem cell research has brought hope to these patients. In recent years, a large number of basic [3,4] and clinical studies [5,6] show that stem cell transplantation can reduce myocardial apoptosis, promote angiogenesis, improve ventricular remodeling, raise cardiac function, and show good prospects for application. Mesenchymal stem cells (MSCs) is widely favored by researchers because of its extensive origin, simple operation and immunity immunity effect. The present study shows that MSCs is safe and effective in the treatment of acute myocardial ischemia. However, there are few studies on the treatment of chronic myocardial ischemia by MSCs. At present, it has not been seen at home and abroad at home and abroad. There are a variety of sources for the study of the combined transplantation of MSCs for the treatment of CHD in the animal model. The existing studies are mostly using bone marrow derived mesenchymal stem cells (bone marrow-derived mesenchymal stem cells, BM-MSCs). But BM-MSCs has the disadvantages of being traumatic, and the MSCs colonization of older donors is limited. The feasibility of various other sources of MSCs for the treatment of heart disease is discussed. Among them, the umbilical cord derived mesenchymal stem cells (umbilical cord-derived mesenchymal stem cells, UC-MSCs) are ideal for replacing BM-MSCs because of their noninvasive, non ethical limitations, strong cell proliferation and differentiation, and the ability to secrete a variety of angiogenic factors. Cell source [9]. now has a large number of pre clinical or clinical reports on the use of UC-MSCs for various diseases, including liver cirrhosis [10], diabetic [11], systemic lupus erythematosus [12], graft-versus-host disease, GVHD [13] and so on, but it is still in the initial stage of heart disease research. UC-MSCs for the treatment of CHD is reported. Therefore, this study is to establish a porcine chronic ischemic heart disease animal model, transplanting allogenic pig bone marrow derived mesenchymal stem cells (pig bone marrow-derived mesenchymal stem cells, P BM-MSCs) and human umbilical cord derived mesenchymal stem cells (human umbilical) by two intravenous infusion of coronary artery. Ord-derived mesenchymal stem cells, H UC-MSCs) intervention, using coronary angiography, cardiac ultrasound, single photon emission computed tomography (single-photon emission computed tomography, SPECT) and histopathology to evaluate the therapeutic effect of MSCs transplantation on bone marrow and umbilical cord sources for future clinical applications. Firstly, the Ficoll density gradient method was used to separate P BM-MSCs, and the phase microscope observation showed that P BM-MSCs was spindle shaped, vortexed or fish tail like growth. The flow test results showed that P BM-MSCs expressed CD44, CD29, CD90, while CD34, CD34, and CD90 were negative. Adipose cells, osteoblasts, chondrocytes. Then we use enzyme digestion method to separate h UC-MSCs. Under phase contrast microscope, the cells are spindle shaped, vortexed or parallel arrangement. Flow cytometry results show that cells express CD29, CD44, CD73, CD90, CD105 and HLA-ABC, and CD34, CD45, HLA-DR expression is negative. The differentiation of adipose cells, osteoblasts and chondrocytes. Finally, we focused on the therapeutic effect of P BM-MSCs and H UC-MSCs on the large animal model of chronic ischemic heart disease. 30 small pigs were selected and the Ameroid artery coarctation ring was placed in the left circumflex branch of the pig (left circumflex coronary artery, LCX) to establish a chronic ischemic heart disease animal model. The model was evaluated by coronary angiography and electrocardiogram after 4 weeks. The 20 surviving animals were randomly divided into P BM-MSCs group (n=8), H UC-MSCs group (n=6) and control group (n=6). The treatment group was transplanted with CM-Di I marked P BM-MSCs and h, and the control group was transfused with saline. Coronary collateral circulation was detected by coronary angiography before and 4 weeks after transplantation. Cardiac function and cardiac structure were detected by echocardiography. Myocardial perfusion was detected by SPECT. The infarct area was calculated by 2,3,5- chlorination of three phenyl tetrazoles (TTC) after the death of the animals, and the marginal area of the infarct was selected. Pathological sections were prepared to detect myocardial fibrosis, apoptosis, neovascularization, and the implantation and outcome of the transplanted cells. 4 weeks after modeling, 20 surviving porcine coronary angiography showed that LCX was completely obliterate, and the electrocardiogram showed I, AVL and (or) II, AVF and (or) V4-V6 lead ST segment depression and (or) T wave changes. Cell transplantation After 4 weeks, the results of coronary angiography showed that there were collateral vessels in both the control group and the cell therapy group, but the Rentrop score in the control group was not statistically significant compared with the control group, while the results in the P BM-MSCs group and the H UC-MSCs group were significantly different (P0.01), indicating that the cell transplantation promoted the formation of the collateral circulation; compared with the control group, the P BM-MSCs group and the control group were compared with the control group. There was a significant difference in the collateral vessel count results in the H UC-MSCs group (P0.05), but there was no significant difference between the two cell treatment groups. The ECG results showed that the heart rate (heart rate, HR) in the P BM-MSCs and H UC-MSCs transplantation group was not significantly higher than that before the treatment, while the control group was significantly increased (P0.01). Ricular ejection fraction, LVEF) was higher than that before treatment, P BM-MSCs group rose from 53.91% + 6.72% to 58.19 + 7.10% (P0.05), H UC-MSCs group rose from 56.12 + 2.86% to 61.32 + 3.23% (P0.05), while LVEF in control group was lower than before treatment, and the increase of LVEF in cell therapy group was significantly different from that of control group. There was no difference between the Cs groups. Compared with the control group, the thickening rate of the systolic ventricular wall of the two cell therapy group (systolic thickening fraction in the infarcted left ventricular wall, WTh F) was statistically different. And the left ventricular end diastolic volume (left ventricular end-diastolic volume, LVEDV) was significantly higher than before the treatment (P0.05), while the P BM-MSCs group and the H UC-MSCs group had no significant changes in.SPECT results before and after treatment: the myocardial perfusion in the control group and the cell treatment group was better than that before the treatment. .05) improved compared with the control group, and there was no significant difference between the two. The histopathological results showed that the infarct area of the P BM-MSCs group and the H UC-MSCs group was 7.89 + 2.62% and 8.35 + 1.88%, respectively, compared with the control group (14.52 + 4.85%), respectively (P0.05); HE staining: the inflammatory score of the cell transplantation group was significantly lower than that of the control group (P0.05); Masson tricolor staining was found. The collagen volume fraction (collagen volume fraction, CVF) in the color display cell transplantation group was significantly smaller than that of the control group (P0.05), and the blood vessel count: the microvascular density in the P BM-MSCs and H UC-MSCs transplantation group was significantly higher than that of the control group (P0.05). The number of apoptotic cardiomyocytes in group 100 cells) and H UC-MSCs group (13 + 4 cells/100cells) was significantly less than that of the control group (24 + 3 cells/100 cells) (P0.01). There was CM-Di I labeled cells in the marginal area of the infarct under the fluorescence microscope. The immunofluorescence staining showed that the P BM-MSCs group and the H group were all differentiated into vascular endothelial cells. .RT-q PCR showed that the expression of angiopoietin (angiogenin, Ang) in the P BM-MSCs group was higher than that of the control group (P0.05), and the expression of Ang (P0.01) and vascular endothelial growth factor in the H UC-MSCs group was higher than that of the control group. The expression of fibroblast growth factor (FGF) and thymosin beta 4 (thymosin beta 4, T beta 4) had no significant changes. This study successfully isolated and cultured P BM-MSCs and H UC-MSCs, and succeeded in establishing a porcine chronic ischemic heart disease model by placing the contraction ring of the Ameroid artery. The results of MSCs therapy show that both P BM-MSCs and H UC-MSCs can effectively reduce infarct size, reduce inflammatory response, reduce myocardial apoptosis and myocardial fibrosis, promote the formation of collateral circulation and angiogenesis, improve myocardial perfusion, improve ventricular remodeling and improve cardiac function, and there is no significant difference in the therapeutic effect of two kinds of cells.

【学位授予单位】:中国人民解放军军事医学科学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:R541

【相似文献】

相关期刊论文 前10条

1 本刊编辑部;;我国首家间充质干细胞库在天津落成[J];中国药业;2006年07期

2 张鑫;赵桂秋;;间充质干细胞在眼科领域的研究与应用[J];中国组织工程研究与临床康复;2009年06期

3 史春梦;;间充质干细胞表述中需要注意的几个问题[J];第三军医大学学报;2009年14期

4 瞿海龙;边剑飞;张冰;王颖;周英莲;;间充质干细胞临床应用的前景与困惑[J];医学研究与教育;2011年05期

5 郭子宽;;间充质干细胞及其临床应用中的几个问题[J];中国组织工程研究;2012年01期

6 李炳尧;武晓云;吴岩;;间充质干细胞的分离与培养:从实验室到临床[J];中国组织工程研究;2013年14期

7 吴实;邓列华;;皮肤间充质干细胞在促进皮肤愈合中的作用[J];实用皮肤病学杂志;2013年03期

8 吴清法,王立生,吴祖泽;间充质干细胞的来源及临床应用[J];军事医学科学院院刊;2002年03期

9 黄定强;间充质干细胞的研究进展[J];国外医学(耳鼻咽喉科学分册);2003年03期

10 付文玉,路艳蒙,乔东访,朴英杰;运用组织工程学原理构建间充质干细胞的三维培养体系[J];潍坊医学院学报;2003年03期

相关会议论文 前10条

1 陈可;王丁;韩之波;朱德林;韩忠朝;;人脐带间充质干细胞体外发挥免疫活性的研究[A];第12届全国实验血液学会议论文摘要[C];2009年

2 金明顺;张毅;贾秀芬;周燕华;闫妍;刘慧雯;;小鼠脂肪间充质干细胞的分离、培养以及多潜能分化的研究[A];中国解剖学会第十一届全国组织学与胚胎学青年学术研讨会论文汇编[C];2009年

3 李争艳;刘杨;翟丽丽;杨迷玲;王立峰;;间充质干细胞在肿瘤发展过程中的作用[A];中华医学会病理学分会2009年学术年会论文汇编[C];2009年

4 张彦;李尚珠;;间充质干细胞在血管工程中的机制及应用[A];2009全国中西医结合周围血管疾病学术交流会论文集[C];2009年

5 石玉;戴\戎;;周期性拉应力对间充质干细胞分化影响的研究[A];第九届全国生物力学学术会议论文汇编[C];2009年

6 黎娇;朱争艳;杜智;骆莹;王鹏;高英堂;;人脐带间充质干细胞分泌物对肝细胞增殖和凋亡的影响[A];天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集[C];2010年

7 谭远超;Kevin;姜红江;黄相杰;周纪平;;间充质干细胞在骨伤疾病治疗中的应用[A];首届全国中西医结合骨科微创学术交流会暨专业委员会成立大会论文汇编[C];2011年

8 唐佩弦;;间充质干细胞及其临床应用前景[A];第三届全国血液免疫学学术大会论文集[C];2003年

9 戴育成;;间充质干细胞的生物学特性和应用[A];2005年华东六省一市血液病学学术会议暨浙江省血液病学学术年会论文汇编[C];2005年

10 胡琳莉;王昕荣;钱坤;李舟;杨薇;朱桂金;;小鼠间充质干细胞向子宫内膜分化的实验研究[A];第一届中华医学会生殖医学分会、中国动物学会生殖生物学分会联合年会论文汇编[C];2007年

相关重要报纸文章 前10条

1 满学杰;天津滨海新区建最大间充质干细胞生产基地[N];新华每日电讯;2008年

2 满学杰;津昂赛打造间充质干细胞生产基地[N];医药经济报;2008年

3 第三军医大学西南医院输血科 李忠俊 整理 吴刘佳;间充质干细胞研究又见新方法[N];健康报;2013年

4 上海生科院 上海交大医学院健康科学研究所 曹楷;间充质干细胞:干细胞中的孙悟空[N];上海科技报;2014年

5 记者 陈建强;首家间充质干细胞库在津建成[N];光明日报;2006年

6 记者 冯国梧;细胞产品国家工程中心建设方案获准[N];科技日报;2007年

7 实习生 刘霞;间充质干细胞有望用于面部整形[N];科技日报;2007年

8 本报记者 王新佳;我国“原始间充质干细胞”注射液进入临床研究[N];中国高新技术产业导报;2005年

9 冯国梧;全球首个脐带间充质干细胞库规模化运营[N];科技日报;2008年

10 刘莹清;全球首个脐带间充质干细胞库泰达规模运营[N];北方经济时报;2008年

相关博士学位论文 前10条

1 郑楚萍;功能化纳米粒子对间充质干细胞分化的影响及细胞成像的应用[D];暨南大学;2015年

2 王皓;五指山小型猪OCT-4、SOX-2基因在骨髓间充质与脐带间充质干细胞中的过表达研究[D];中国农业科学院;2013年

3 孔德晓;间充质干细胞及胰岛素分泌细胞治疗糖尿病的临床及应用基础研究[D];山东大学;2015年

4 董苑;SDF-1复合PDPBB的构建及对间充质干细胞趋化影响的研究[D];昆明医科大学;2015年

5 王磊;诱导胎盘来源间充质干细胞向成牙骨质细胞分化的实验研究[D];山东大学;2015年

6 房贺;连接黏附分子A在促进MSC修复CC14肝损伤中的作用及其机制[D];第二军医大学;2015年

7 李雪;人脐带间充质干细胞免疫调节机制的研究[D];北京协和医学院;2015年

8 陈可;人脐带来源间充质干细胞的免疫调节作用[D];中国协和医科大学;2010年

9 王静;胎儿来源的间充质干细胞的生物学特性以及间充质干细胞在肝纤维化中治疗机制的研究[D];中国协和医科大学;2008年

10 鞠洪斌;大鼠脂肪间充质干细胞和骨髓间充质干细胞成骨分化比较的体外研究[D];中南大学;2006年

相关硕士学位论文 前10条

1 李超;小鼠骨髓间充质干细胞中AC基因亚型的表达及AC3对其纤毛长度的影响[D];河北大学;2015年

2 林涛;壳聚糖水凝胶复合脂肪间充质干细胞修复兔关节软骨缺损的实验研究[D];川北医学院;2015年

3 彭龙英;心肌营养素1促进人脐血间充质干细胞神经分化存活及PI3K/Akt信号通路机制研究[D];遵义医学院;2015年

4 乔晓慧;酸性环境对人脐带间充质干细胞的影响[D];内蒙古大学;2015年

5 张红霞;人脐带间充质干细胞的分离、鉴定及其对人肺癌细胞恶性表型的影响[D];内蒙古大学;2015年

6 顾立超;BTK抑制剂对间充质干细胞miR-21的调节作用[D];河北联合大学;2014年

7 王文杰;鸭胚间充质干细胞生物学特性及其移植修复肝损伤研究[D];中国农业科学院;2015年

8 张猛;血管内皮前体细胞对间充质干细胞分化潜能的影响[D];石河子大学;2015年

9 马丽媛;利用MyoD基因诱导绵羊脐带间充质干细胞分化为成肌细胞的研究[D];东北林业大学;2015年

10 宋维文;MicroRNA-133诱导绵羊间充质干细胞分化为成肌细胞的研究[D];东北林业大学;2015年



本文编号:1847290

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/1847290.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户206c6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com