当前位置:主页 > 医学论文 > 心血管论文 >

内质网应激调控炎症反应在高血压心脏损伤中的分子机制研究

发布时间:2018-05-12 08:52

  本文选题:高血压心脏损伤 + 炎症反应 ; 参考:《首都医科大学》2016年博士论文


【摘要】:背景高血压的危害性在于它会导致靶器官损伤,其中心脏损伤非常重要,在此过程中炎症反应发挥十分重要的作用。我们研究已经证明,骨髓来源的炎症细胞,包括巨噬细胞,T细胞和中性粒细胞,在高血压心脏损伤中发挥重要作用,但其中的分子机制尚未在整体水平上进行阐明。全基因组学(RNA-Seq)技术为基础的转录组研究,能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理,但是目前RNA-Seq技术尚未运用于高血压诱导的心脏损伤研究中。大量研究表明内质网应激(ERS)信号通路的激活可以调控炎症反应的发生发展,并参与到多种心血管疾病中。然而,ERS是否参与高血压诱导的心脏炎症反应,以及ERS在此过程中发挥着什么样的作用仍不清楚。所以本研究使用RNA-Seq技术在整体基因组水平研究了炎症反应在高血压心脏损伤的分子机制,以及高血压早期ERS在高血压诱导的心脏炎症损伤中的作用。目的Ang II灌注复制小鼠高血压模型于1、3、7天收取心脏组织提取RNA,采用RNA-Seq进行动态筛选,采用生物学信息分析软件进行在线分析,寻找早期升高最明显的信号通路及ERS相关的信号通路,进而采用ERS信号通路相关分子的敲除小鼠复制高血压模型,观察心脏组织中炎症细胞、炎症因子变化。在整体基因组水平明确炎症反应在高血压心脏损伤的分子机制;并明确ERS在高血压导致心脏损伤过程中的作用,阐明ERS参与心脏损伤过程中的分子机理。方法1.高血压心脏损伤模型制备:采用持续皮下微量泵灌注angii的方法建立高血压心脏损伤模型,灌注angii的剂量为1500ng/kg/min,灌注的时间分别为1、3、7天,设置微量泵灌注生理盐水为对照组(sham)。angii灌注后监测血压高于140/90mmhg提示模型建立成功。2.血压监测:采用尾动脉套管法血压测量仪在angii灌注前测量小鼠基础血压;并在angii灌注后连续测定小鼠血压,明确高血压模型是否建立成功。3.心功能测定:使用visualsonicsvevo2100小动物超声在小鼠angii灌注前测定小鼠基础心功能,并在angii灌注后第7天测量高血压小鼠的心脏功能,明确心功能相关指标的改变。4.炎症细胞浸润检测:采用流式细胞术测定angii灌注前和angii灌注后心脏组织中浸润炎症细胞的种类和数量的变化,包括中性粒细胞、巨噬细胞、t细胞等。5.心脏纤维化检测:采用masson三色染色法,天狼猩红染色法,免疫组化染色法(α-sma、tgf-β1)以及realtime-pcr(collagen1,collagen3和fibronectin)等方法检测angii灌注前和angii灌注后心脏组织中纤维化形成情况。6.基因组变化的检测:运用rna-seq技术(illuminahiseqtm2000)对wt小鼠angii灌注后0、1、3、7天的rna样品进行测序,并对差异表达基因进行表达模式聚类分析、go功能显著性富集分析、pathway显著性富集分析和蛋白质相互作用网络分析。7.心脏炎症因子的检测:使用rna-seq技术检测和分析炎症因子相关基因的改变,并采用realtime-pcr对相应炎症因子的mrna表达水平进行验证(s100a8、s100a9、cxcl1、cxcl2、ccl2、ccl9等)。8.骨髓移植:8-12周龄的wt和chop-/-受体小鼠钴60放射源10gy进行照射后,4-8小时内回输供体小鼠骨髓细胞5x106个/只,放入干净的spf环境下进行饲养8周进行骨髓重建。在此期间饮水为加广谱抗真菌和抗细菌抗生素、ph=2.0的无菌水,8周后改为正常饮水,并可进行相应的实验。9.小鼠骨髓中性粒细胞:采用密度梯度离心法分离骨髓中性粒细胞。10.凋亡及凋亡细胞类型:tunel染色法检测心脏组织中凋亡的细胞,并使用免疫荧光共染的方法确定凋亡细胞的类型。11.凋亡信号通路检测:westernblot检测凋亡相关蛋白bcl-2、bcl-xl等的改变。12.统计学分析:所有数据都以平均值±标准差(x±sem)表示。符合正态分布的计量资料,两组间比较采用成组t检验,不符合正态分布的计量资料采用秩和检验。p0.05为差异有统计学意义。所有数据采用graphpadprism软件进行统计分析。结果第一部分1.angii诱导高血压心脏炎症和纤维化损伤的模型建立成功。2.差异表达基因(degs)分析显示,与对照组sham相比,angii灌注1天、3天、7天后发生变化的基因共有1801个。3.degs的go分析显示angii灌注后,富集的go通路包括对内源性刺激的反应,对急性应激的反应,免疫系统的反应,细胞外组织结构的重建以及细胞外基质的重建等。4.degs的kegg信号通路分析显示angii灌注后,细胞因子-细胞因子相互作用通路,趋化因子信号通路,细胞外基质(ecm)受体相互作用,细胞粘附以及tgf-β等信号通路被激活。5.degs的聚类分析显示angii灌注后心脏中的差异表达1801个基因可被划分为16种表达模式,每一种代表该组基因在angii灌注后具有相同的表达模式。6.degs的蛋白-蛋白相互作用网络分析显示ubiquitinc与周围118个基因相互作用;rnf2,eed,npm1,myc等可与其他10个以上的基因相互作用。第二部分7.rna-seq和rt-pcr显示angii灌注后引起内质网应激信号通路的激活。8.内质网应激信号通路中的一个关键分子为chop,chop缺失后增加angii诱导的心脏中炎症因子的表达。9.流式细胞术检测显示chop缺失后增加angii诱导的心脏中巨噬细胞、中性粒细胞、t细胞等炎症细胞的浸润。10.masson染色和rt-pcr显示chop缺失后加重angii诱导的心脏纤维化损伤。11.骨髓移植实验显示骨髓来源细胞表达的chop,在angii诱导的高血压心脏损伤中发挥重要作用。12.chop缺失减少angii灌注后心脏组织中中性粒细胞的凋亡。13.chop缺失减少体外中性粒细胞凋亡。结论第一部分1.与sham相比,angii灌注心脏1天、3天、7天后,诱导心脏组织中1,801个基因差异表达。2.对内源性刺激的反应,对急性应激的反应,免疫系统的反应,细胞外组织结构的重建以及细胞外基质的重建等go信号通路在angii诱导的心脏损伤中发挥重要作用。3.细胞因子-细胞因子相互作用通路,趋化因子信号通路,细胞外基质(ecm)受体相互作用,细胞粘附以及tgf-β等信号通路在angii诱导的心脏损伤中发挥重要作用。4.angii灌注后心脏中的差异表达的1801个基因可被划分为16种表达模式,并在高血压心脏损伤的过程中发挥重要作用。5.ubiquitinc,rnf2,eed,npm1以及myc等基因通过与周围其他多种基因相互作用在高血压心脏损伤的过程中发挥重要作用。第二部分6.Ang II灌注早期可诱导内质网应激发生。7.CHOP缺失后增加Ang II诱导的心脏炎症因子表达、炎症细胞浸润,并最终加重高血压心脏纤维化损伤。8.骨髓来源细胞表达的CHOP在Ang II诱导的高血压心脏损伤中发挥重要作用。9.早期内质网应激和CHOP在高血压心脏损伤中发挥保护作用,可能是通过减少中性粒细胞的凋亡,延迟早期炎症清除,从而加重心脏炎症反应和心脏损伤。综上所述,在Ang II诱导的高血压心脏损伤过程中,炎症反应发挥着重要作用。机体会启动关于急性应激反应,免疫系统反应,细胞外组织结构重建以及细胞外基质重建等信号通路参与到该损伤过程中。其中Ang II灌注后的高血压早期会启动内质网应激信号通路,当内质网应激异常(CHOP缺失)时则会加重高血压诱导的心脏炎症和纤维化损伤。
[Abstract]:Background the harm of hypertension is that it causes damage to the target organ, in which the heart damage is very important and the inflammatory response plays a very important role in this process. Our study has shown that the inflammatory cells derived from bone marrow, including macrophages, T cells and neutrophils, play an important role in the heart damage of hypertension, but they are important The molecular mechanisms in the genome have not yet been clarified at the overall level. RNA-Seq technology based transcriptional studies can study gene function and gene structure from the overall level, reveal specific biological processes and molecular mechanisms in the process of disease, but RNA-Seq technology has not yet been used to induce hypertension. A large number of studies have shown that the activation of endoplasmic reticulum stress (ERS) signaling pathways can regulate the development of inflammatory responses and participate in a variety of cardiovascular diseases. However, it is not clear whether ERS is involved in hypertension induced cardiac inflammation and what role ERS plays in this process. The molecular mechanism of inflammatory response in hypertensive heart damage and the role of ERS in hypertension induced cardiac inflammation were studied at the overall genomic level by RNA-Seq technique. Objective Ang II perfusion and replication of hypertension model in mice was used to collect RNA for cardiac tissue from 1,3,7 days and select RNA-Seq for dynamic screening. The biological information analysis software carries out online analysis to find the most obvious signal pathways and ERS related signaling pathways in the early stage, and then use the knockout mice of ERS signaling molecules to replicate the hypertension model and observe the changes of inflammatory cells and inflammatory factors in the heart tissues. The molecular mechanism of heart damage and the role of ERS in the process of heart damage caused by hypertension and the molecular mechanism of ERS involved in the heart damage. Method 1. model preparation of hypertensive heart damage: a model of hypertensive heart damage was established by continuous subcutaneous micropump perfusion of AngII, and the dose of AngII was 1500ng/kg/mi N, the time of perfusion was 1,3,7 days respectively, and micropump perfusion of saline was set up as the control group (sham). After.Angii perfusion, the blood pressure monitoring was higher than that of 140/90mmhg, and the blood pressure was measured by the tail artery cannula method of blood pressure measuring instrument before AngII perfusion, and the blood pressure of mice was continuously measured after AngII perfusion, and the blood pressure was determined continuously after AngII perfusion. Whether the hypertensive model was established successfully.3. cardiac function test: using visualsonicsvevo2100 small animal ultrasound to measure the basic cardiac function before AngII perfusion in mice, and measure the cardiac function of the hypertensive mice seventh days after AngII perfusion, and make clear the changes of the cardiac function related indexes of the.4. inflammatory cell infiltration test: the flow cytometry was used to measure the cardiac function. Changes in the types and numbers of infiltrating inflammatory cells in the cardiac tissue before and after AngII perfusion were determined, including neutrophils, macrophages, T cells and other.5. cardiac fibrosis tests: Masson tricolor staining, Sirius scarlet staining, immunohistochemical staining (alpha -sma, tgf- beta 1), and realtime-pcr (collagen1, collagen3 and fibron). Ectin) detection of.6. genome changes in cardiac tissue before and after perfusion of AngII after perfusion and AngII perfusion: RNA-seq technique (illuminahiseqtm2000) was used to sequence the RNA samples of 0,1,3,7 days after AngII perfusion in WT mice and to cluster analysis on the expression pattern of differentially expressed genes and significant enrichment of go function. Analysis of pathway significant enrichment analysis and protein interaction network analysis of the detection of.7. cardiac inflammatory factors: using RNA-seq technique to detect and analyze the changes in genes related to inflammatory factors, and to use realtime-pcr to verify the mRNA expression level of the corresponding inflammatory factors (S100A8, S100A9, CXCL1, cxcl2, CCL2, ccl9, etc.).8. bone marrow transplantation: 8-1 2 weeks old WT and chop-/- receptor mice were irradiated with cobalt 60 source 10GY, and the bone marrow cells of the donor mice were reused for 8 weeks for 8 weeks in 4-8 hours, and the bone marrow cells were reared in a clean SPF environment for 8 weeks. During this period, the drinking water was added to the broad-spectrum antifungal and anti bacterial antibiotics, and the ph= 2 was sterile water, and changed to normal drinking water after 8 weeks. .9. mouse bone marrow neutrophils were tested by the method of density gradient centrifugation to isolate.10. apoptosis and apoptotic cells in bone marrow neutrophils: TUNEL staining was used to detect apoptotic cells in cardiac tissue, and the apoptosis signaling pathway of apoptotic cells was determined by immunofluorescence CO staining: Westernblot detection The change of apoptosis related protein Bcl-2, Bcl-xL and so on.12. statistical analysis: all data were expressed with mean standard deviation (x + SEM). The measurement data conforming to normal distribution were compared with group t test, and the measurement data that did not conform to normal distribution used rank sum test and.P0.05 as difference was statistically significant. All data were graphpadp Rism software was used for statistical analysis. Results the first part of 1.angii induced hypertension and cardiac fibrosis damage model established the successful.2. differential expression gene (DEGs) analysis showed that compared with the control group sham, AngII perfusion was 1 days, 3 days, and 7 days after the change of the go analysis showed AngII perfusion, enriched go through. The pathway includes responses to endogenous stimuli. The response to acute stress, the response of the immune system, the reconstruction of the structure of the extracellular tissue, and the reconstruction of the extracellular matrix,.4.degs KEGG signal pathway analysis shows that after AngII perfusion, the cytokine cytokine interaction pathway, chemokine signaling pathway, and the extracellular matrix (ECM) receptor phase Interaction, cell adhesion and tgf- beta signaling pathway activation.5.degs cluster analysis showed that 1801 genes expressed in the heart after AngII perfusion could be divided into 16 expression patterns, each of which represents the same expression pattern.6.degs after AngII perfusion, the protein protein interaction network analysis showed ubiqu Itinc interacts with the surrounding 118 genes; Rnf2, eed, NPM1, Myc, etc. can interact with more than 10 other genes. Second 7.rna-seq and RT-PCR show that a key component in the activation of the endoplasmic reticulum stress signaling pathway after AngII perfusion is a key component of the.8. endoplasmic reticulum stress signal pathway, which increases the AngII induced heart after chop deletion. Expression of medium inflammatory factors.9. flow cytometry showed that after chop deletion, AngII induced macrophages, neutrophils, T cells and other inflammatory cells were infiltrated.10.masson staining and RT-PCR showed chop deletion aggravated AngII induced cardiac fibrosis injury and.11. bone marrow transplantation experiment showed Cho of bone marrow derived cells. P, which plays an important role in AngII induced hypertensive heart damage,.12.chop deletion reduces the apoptosis.13.chop deletion of neutrophils in cardiac tissue after AngII perfusion and reduces the apoptosis of neutrophils in vitro. Conclusion the first part 1. compared with sham, AngII perfusion was 1 days, 3 days, and 7 days after AngII perfusion, inducing 1801 gene differential expression in cardiac tissue. 2. the response to endogenous stimuli, the response to acute stress, the response of the immune system, the reconstruction of the structure of the extracellular tissue, and the reconstruction of the extracellular matrix, play an important role in the heart damage induced by AngII,.3. cytokine cytokine interaction, chemokine signaling pathway, and extracellular matrix (ECM). Body interaction, cell adhesion and tgf- beta signaling pathway play an important role in AngII induced heart damage. The 1801 genes expressed differently in the heart after.4.angii perfusion can be divided into 16 expression patterns, and play important roles in.5.ubiquitinc, Rnf2, eed, NPM1, and myc in the process of hypertensive heart damage. Interaction with a variety of other genes in the surrounding area plays an important role in the process of hypertensive heart damage. Second part of 6.Ang II perfusion can induce endoplasmic reticulum stress to induce.7.CHOP deletion and increase the expression of cardiac inflammatory factors induced by Ang II, infiltration of inflammatory cells, and ultimately aggravate the.8. marrow of hypertensive cardiac fibrosis. CHOP expressed by source cells plays an important role in Ang II induced hypertensive heart damage,.9. early endoplasmic reticulum stress and CHOP play a protective role in hypertensive heart damage, which may be by reducing the apoptosis of neutrophils and delayed early inflammatory clearance, thus adding center of gravity and inflammation and heart damage. To sum up, in Ang The inflammatory response plays an important role in the process of II induced hypertensive heart damage. The signal pathways involved in the acute stress response, the immune system response, the reconstruction of the extracellular structure and the reconstruction of the extracellular matrix are involved in the injury process. In the early stage of hypertension after Ang II perfusion, the endoplasmic reticulum stress letter will be started. Signal pathway, when endoplasmic reticulum stress abnormality (CHOP deletion), aggravates hypertension induced cardiac inflammation and fibrosis damage.

【学位授予单位】:首都医科大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:R541.3

【相似文献】

相关期刊论文 前10条

1 孙丹桂,冯景民,李志高,丁志杰;心脏损伤抢救成功2例[J];中国危重病急救医学;2002年11期

2 苏才坤;马驰;甄宇洋;刘奕山;鲍菲;邓量;李守智;;穿入性心脏损伤抢救成功5例报告[J];中山大学学报(医学科学版);2003年S1期

3 芦乙滨,胡玉萍;心脏损伤52例治疗体会[J];中国医师杂志;2005年01期

4 曹宏旭;;心脏损伤急救探讨(附52例临床分析)[J];大连医科大学学报;2007年06期

5 黄戈;黄斌;;心脏损伤的外科治疗[J];中国胸心血管外科临床杂志;2011年06期

6 吴哲凡;林道平;;心脏损伤(附三例报告)[J];广州医学院学报;1981年02期

7 胡伟恩;;心脏损伤70例分析[J];国外医学.外科学分册;1987年01期

8 赵光敏;李雄;张大器;;心脏损伤的诊断与治疗[J];云南医药;1988年03期

9 王德才;高伯炎;吕逢宽;姜立业;柴玉;;4例心脏损伤的救治体会[J];海军医学;1993年02期

10 李良彬;林尚清;李法荫;李朝先;温剑虎;向小勇;杨双强;李强;;34例心脏损伤的诊断与治疗[J];中华创伤杂志;1993年04期

相关会议论文 前10条

1 郝永存;梁诗颂;肖新华;;穿透性心脏损伤的诊断与治疗(附6例报告)[A];中华医学会急诊医学分会复苏、灾害、中毒专业联合学术交流会资料汇编[C];1999年

2 徐群英;何明;陈和平;刘丹;彭维杰;;维生素C对铁过载小鼠心脏损伤的保护作用[A];第九届全国心血管药理学术会议论文集[C];2007年

3 刘达兴;梁贵友;徐刚;牛义民;蔡庆勇;宋永祥;张建;李剑;王峰;陈成;;亚临床型穿透性心脏损伤20例救治分析[A];贵州省医学会胸心血管外科分会2010年学术年会论文集[C];2010年

4 吴玲萍;;心脏损伤修复抢救配合[A];第三届全国急诊创伤学学术交流会论文汇编[C];1999年

5 马菊;;12例穿透性心脏损伤的手术配合[A];中华护理学会第16届全国手术室护理学术交流会议论文汇编(上册)[C];2012年

6 张金花;;心脏损伤围手术期的护理[A];全国外科护理学术交流暨专题讲座会议论文汇编[C];2003年

7 陈志跃;蒋森;邬弋;陆骁臻;王子鸿;;急症创伤性疾病引发心脏损伤的临床研究[A];2007年浙江省急诊医学学术年会论文汇编[C];2007年

8 刘昱;丛贵年;;交通事故致心脏损伤分析[A];中国法医学会全国第十三次法医临床学学术研讨会论文集[C];2010年

9 邓桦;王德文;彭瑞云;王水明;高亚兵;陈浩宇;马春全;杨鸿;;高功率脉冲微波辐照对心脏损伤效应及机制研究[A];中国畜牧兽医学会兽医病理学分会第十三次学术讨论会和中国病理生理学会动物病理生理专业委员会第十二次学术讨论会论文集[C];2005年

10 王玉宝;;穿透性心脏损伤存活一例[A];中国法医学会全国第十次法医临床学学术研讨会论文集[C];2007年

相关重要报纸文章 前5条

1 ;动物实验显示骨髓干细胞可用于修复心脏损伤[N];中国高新技术产业导报;2003年

2 冯卫东;美科学家发现蛋白注入疗法可修复心脏损伤[N];科技日报;2009年

3 记者 毛磊;科学家发现骨髓干细胞可修复心脏损伤[N];光明日报;2003年

4 新华;骨髓干细胞可修复心脏损伤[N];保健时报;2003年

5 毛磊;治疗心脏病 干细胞疗法潜力无限[N];医药经济报;2003年

相关博士学位论文 前4条

1 张雪岩;抗辐灵对HPM辐射致心脏损伤的保护作用研究[D];中国人民解放军军事医学科学院;2016年

2 李涛涛;内质网应激调控炎症反应在高血压心脏损伤中的分子机制研究[D];首都医科大学;2016年

3 周珊珊;Nrf2与MT的协同作用在保护慢性间歇性低氧所致心脏损伤中的作用[D];吉林大学;2015年

4 王旭芳;哺乳动物硫氧还蛋白还原酶是癌症治疗的药物靶[D];中国科学技术大学;2008年

相关硕士学位论文 前6条

1 王江涛;某战区作训人员运动性心脏损伤预警的研究[D];河北大学;2015年

2 张棚;~(99m)Tc-MIBI SPECT门控心肌灌注显像评价食管癌放化疗中心脏损伤的研究[D];济南大学;2015年

3 王珍;甘氨酸拮抗内毒素性心脏损伤的作用及机制研究[D];暨南大学;2007年

4 巴尔夏古丽;胸部肿瘤放射治疗心脏损伤的临床观察[D];新疆医科大学;2007年

5 都基刚;多发性肌炎/皮肌炎对心脏损伤的临床分析[D];延边大学;2008年

6 许建彪;血红素加氧酶-1对胰腺炎相关性腹水诱导的心脏损伤的防治作用[D];昆明医学院;2008年



本文编号:1877960

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/1877960.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2cbd5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com