虚拟组织学血管内超声对静脉移植血管介入治疗的慢复流或无复流现象的预测价值
本文选题:虚拟组织学血管内超声 + 静脉移植血管 ; 参考:《天津医科大学》2017年硕士论文
【摘要】:目的:连续入选于天津市胸科医院就诊并在血管内超声(Intravenous Ultrasound,IVUS)的指导下选择于静脉移植血管(Saphenous Vein Graft,SVG)行经皮冠状动脉介入治疗(Percutaneous Coronary Intervention,PCI)的冠状动脉旁路移植术(Coronary Artery Bypass Grafting,CABG)后再发心绞痛的患者,通过研究这些患者的临床基线资料、实验室化验指标、冠状动脉造影(Coronary Arteriography,CAG)复查结果、既往CABG基本情况及虚拟组织学血管内超声(Virtual Histology Intravascular Ultrasound,VH-IVUS)的检查结果,探讨分析导致SVG介入治疗出现慢复流或无复流现象的危险因素,以及VH-IVUS在该慢复流或无复流现象中的预测价值,同时根据随访结果,探索VH-IVUS在SVG介入治疗的SVGD患者预后的预测价值。方法:于2015年4月—2016年9月在天津市胸科医院就诊的CABG术后再发心绞痛患者中,连续入选经冠状动脉和移植血管造影复查证实SVG病变狭窄大于或等于50%的需要PCI术治疗的患者32例,收集研究对象的临床基线资料、既往CABG基本情况、心脏彩超及左心室射血分数(LVEF)及入院血常规、生化常规等实验室检验结果,并在IVUS指导下SVG介入治疗,所有患者在PCI前均进行IVUS及VH-IVUS检查,测量病变SVG狭窄最重处管腔横截面积(Lumen Cross-sectional Area,Lumen CSA)、外弹力膜横截面积(External Elastic Membrane Cross-sectional Area,EEM CSA)、斑块负荷,利用VH软件重建靶病变的组织图像,测量病变SVG病变总体长度、总体斑块体积、坏死核心组织总体积的绝对值及该组织成分占斑块总体积的组织比例、致密钙化组织总体积的绝对值及该组织成分占斑块总体积的组织比例、纤维组织总体积的绝对值及该组织成分占斑块总体积的组织比例、纤维脂质组织总体积的绝对值及该组织成分占斑块总体积的组织比例;测量病变SVG狭窄最重处坏死核心组织面积的绝对值及其占狭窄最重处斑块面积的比值、致密钙化组织面积绝对值及其占狭窄最重处斑块面积的比值、纤维组织面积绝对值及其占狭窄最重处斑块面积的比值、纤维脂质组织面积绝对值及其占狭窄最重处斑块面积的比值等数据,根据PCI术后的评价性CAG的校正TIMI记帧(Corrected TIMI Frame Count,CTFC)测定结果,当CTFC28时定义为正常血流,当CTFC≥28时定义为慢血流,完全无前向血流定义为无复流,将患者分为慢复流或无复流组(n=6)及正常复流组(n=26),分析导致SVG介入治疗出现慢复流或无复流现象的危险因素,以及VH-IVUS在该慢复流或无复流现象中的预测价值,同时根据随访结果,探索VH-IVUS在SVG介入治疗的SVGD患者预后的预测价值。结果:共入选患者32例,包括慢复流或无复流组患者6例、正常复流组患者26例。对比两组患者的临床基线资料发现,正常复流组患者和慢复流组或无复流组患者的收缩压水平(SBP:136.92±19.75 vs.116.50±12.23)差异具有统计学意义(P0.05)。对比两组患者的血常规化验及生化常规化验结果发现,慢复流或无复流组患者和正常复流组患者红细胞平均体积(94.25±9.20 vs.88.96±4.55)、总胆固醇水平(TC:4.79±0.89 vs.4.01±0.74)及高密度脂蛋白胆固醇(HDL-C:1.25±0.40 vs.0.98±0.23)差异均具有统计学意义(P0.05)。根据线性回归结果,提示病变SVG狭窄最重处的斑块负荷同纤维组织的比值呈负相关(R2=0.234,P=0.005)而同纤维脂质组织的比值呈正相关(R2=0.123,P=0.049);病变SVG狭窄最重处的斑块面积同纤维组织的比值呈负相关(R2=0.192,P=0.012)。对比两组患者的病变SVG的VH-IVUS检查结果发现,慢复流或无复流组患者和正常复流组患者的病变长度(79.43±48.68 vs.47.28±29.14)、病变SVG坏死核心组织比例(23.12±10.09 vs.14.39±7.79)、病变SVG致密钙化组织比例(7.33±4.66 vs.3.09±3.42)、病变SVG纤维组织比例(58.82±6.53 vs.66.32±5.55)、病变SVG狭窄最重处坏死核心组织面积(2.07±1.57 vs.0.75±0.78)、病变SVG狭窄最重处坏死核心组织比值(23.38±12.72 vs.12.52±10.86)、病变SVG狭窄最重处致密钙化组织面积(0.30±0.17 vs.0.07±0.13)及病变SVG狭窄最重处致密钙化组织比值(3.85±2.18 vs.1.30±2.44)的结果存在差异,且均具有统计学意义(P0.05)。单因素Logistic回归分析结果表明,患者收缩压水平[OR(95%CI):1.093(1.007~1.186),P=0.033]及病变SVG纤维组织比例[OR(95%CI):1.241(1.038~1.484),P=0.018]的增高是SVG介入治疗的保护因素,而患者总胆固醇(TC)水平[OR(95%CI):0.311(0.096~1.000),P=0.050]、病变SVG坏死核心组织比例[OR(95%CI):0.887(0.790~0.996),P=0.043]、病变SVG致密钙化组织比例[OR(95%CI):0.786(0.627~0.985),P=0.036]、病变SVG狭窄最重处坏死核心组织面积[OR(95%CI):0.328(0.118~0.915),P=0.033]以及病变SVG狭窄最重处致密钙化组织面积[OR(95%CI):0.000(0.000~0.120),P=0.008]的增高是SVG介入治疗出现慢复流或无复流现象的危险因素。将具有共线性的病变SVG纤维组织比例、病变SVG坏死核心组织比例、病变SVG致密钙化组织比例、病变SVG狭窄最重处坏死核心组织面积及病变SVG狭窄最重处致密钙化组织面积合并成VH-IVUS影响因子之后,应用多因素Logistics回归分析显示,VH-IVUS影响因子[OR(95%CI):3.800(1.103~13.085),P=0.034]是SVG介入治疗出现慢复流或无复流现象的独立危险因素。应用Kaplan-Meier生存曲线Log-rank检验显示:中期随访慢复流或无复流组患者对比正常复流组患者,无MACE生存率(66.7%vs.88.5%,P=0.118)、无致命性MI生存率(66.7%vs.92.3%,P=0.056)及无严重心绞痛生存率(66.7%vs.88.5%,P=0.118)均存在下降趋势,差异无统计学意义(P0.05),慢复流或无复流组与正常复流组比较,无严重心力衰竭生存率(83.3%vs.100%,P=0.037)差异存在统计学意义(P0.05)。单因素Cox回归分析显示:患者病变SVG纤维组织比例[OR(95%CI):0.832(0.706~0.980),P=0.028]增高是SVG介入治疗后MACE事件发生的保护因素,病变SVG坏死核心组织比例[OR(95%CI):1.262(1.066~1.493),P=0.007]、病变SVG狭窄最重处坏死核心组织面积[OR(95%CI):3.201(1.396~7.336),P=0.006]的增高是SVG介入治疗后MACE事件发生的危险因素,多因素Cox回归分析显示:患者病变SVG坏死核心组织比例[OR(95%CI):1.439(1.055~1.962),P=0.022]增高是SVG介入治疗后MACE事件发生的独立危险因素。结论:病变SVG狭窄最重处的斑块负荷同纤维组织的比值负相关而同纤维脂质组织的比值呈正相关;病变SVG狭窄最重处的斑块面积同纤维组织的比值呈负相关。单因素Logistic回归分析提示,患者更高的收缩压水平以及更高病变SVG纤维组织比例是SVG介入治疗慢复流或无复流的保护因素,而患者总胆固醇水平、病变SVG坏死核心组织比例、病变SVG致密钙化组织比例、病变SVG狭窄最重处坏死核心组织面积以及病变SVG狭窄最重处致密钙化组织面积的增高是SVG介入治疗出现慢复流或无复流现象的危险因素。多因素Logistic回归分析提示,VH-IVUS影响因子是SVG介入治疗出现慢复流或无复流现象的独立危险因素。Kaplan-Meier生存曲线Log-rank检验提示,中期随访慢复流或无复流组患者的无严重心力衰竭生存率低于正常复流组。检验同时提示慢复流或无复流组患者的无MACE生存率、无致命性MI生存率及无严重心绞痛生存率均较正常复流组有下降趋势。单因素Cox回归分析提示,患者病变SVG纤维组织比例增高是SVG介入治疗后MACE事件发生的保护因素,病变SVG坏死核心组织比例、病变SVG狭窄最重处坏死核心组织面积的增高是SVG介入治疗后MACE事件发生的危险因素,多因素Cox回归分析显示:患者病变SVG坏死核心组织比例增高是SVG介入治疗后MACE事件发生的独立危险因素。
[Abstract]:Objective: to select the coronary artery bypass graft (Percutaneous Coronary Intervention, PCI) for the coronary artery bypass grafting (Percutaneous Coronary Intervention, PCI) under the guidance of Intravenous Ultrasound (IVUS) in the Tianjin Thoracic Hospital and to select Saphenous Vein Graft (SVG) for the coronary artery bypass grafting (Percutaneous Coronary Intervention, PCI). CABG) patients with recurrent angina pectoris were studied by studying the clinical baseline data, laboratory test indicators, Coronary Arteriography (CAG) reexamination results, previous CABG basic situation and the examination results of the virtual histologic intravascular ultrasound (Virtual Histology Intravascular Ultrasound, VH-IVUS). The risk factors of slow reflow or non reflow phenomenon in SVG intervention, and the predictive value of VH-IVUS in the slow reflow or reflow phenomenon, and the predictive value of the prognosis of VH-IVUS in the SVGD patients with SVG intervention according to the follow-up results. Methods: CABG operation in Tianjin Thoracic Hospital from April 2015 to September 2016. In the patients with recurrent angina pectoris, 32 patients with SVG stenosis greater than or equal to 50% were selected through coronary artery and angiography reexamination. The clinical baseline data of the subjects were collected, the basic information of previous CABG, cardiac color Doppler and left ventricular ejection fraction (LVEF), admission blood routine, biochemical routine, and so on were collected. The results of laboratory test, and SVG intervention under the guidance of IVUS, all patients performed IVUS and VH-IVUS before PCI, and measured the most severe transverse area of the lumen of SVG stenosis (Lumen Cross-sectional Area, Lumen CSA), the transverse area of the outer elastic membrane, and the patch load. The total length of SVG lesions, the total plaque volume, the absolute value of the total volume of the necrotic core tissue, the proportion of the tissue composition in the total volume of the tissue, the absolute value of the total volume of the dense calcified tissue, the proportion of the tissue composition in the total volume of the plaque, the absolute volume of the fibrous tissue, were measured. The absolute value of the total volume of the tissue, the absolute value of the total volume of the fibrous tissue and the proportion of the tissue in the total volume of the plaque, the absolute value of the necrotic core area of the most serious SVG stenosis and the ratio of the area in the most serious area of the stenosis, and the absolute value of the compact calcified tissue area and its absolute value. The ratio of the area of the most severe plaque, the absolute value of fibrous tissue area and the ratio of the area of the most serious area of the stenosis, the absolute value of the area of the fibrous tissue and the ratio of the most serious area of the plaque, were measured by the corrected TIMI frame (Corrected TIMI Frame Count, CTFC) by the evaluation of the evaluation of PCI after the operation. CTFC28 is defined as normal blood flow. When CTFC > 28 is defined as slow flow, no forward flow is defined as no complex flow, and the patients are divided into slow reflow or non reflow group (n=6) and normal reflow group (n=26), and the risk factors that lead to slow reflow or non reflow phenomenon in SVG intervention therapy, and VH-IVUS in the slow reflow or no reflow phenomenon are analyzed. The predictive value of VH-IVUS was also evaluated according to the follow-up results. Results: the prognostic value of VH-IVUS in patients with SVG intervention was investigated. Results: 32 patients were enrolled, including 6 patients with slow reflow or no reflow group and 26 patients in normal reflow group. The clinical baseline data of the two groups were compared with the normal reflow group, the slow reflow group or the non reflow group. The difference of systolic blood pressure level (SBP:136.92 + 19.75 vs.116.50 + 12.23) was statistically significant (P0.05). The average volume of red blood cells (94.25 + 9.20 vs.88.96 + 4.55) and total cholesterol level in patients with slow reflow or non reflow group and normal reflow group were compared with those of two groups. (TC:4.79 The difference between 0.89 vs.4.01 + 0.74) and high density lipoprotein cholesterol (HDL-C:1.25 + 0.40 vs.0.98 + 0.23) had statistical significance (P0.05). According to the linear regression results, the plaque load in the most severe SVG stenosis was negatively correlated with the ratio of fibrous tissue (R2=0.234, P= 0.005), and was positively correlated with the ratio of fibrous tissue (R2=0.123) (R2=0.123). P=0.049); the plaque area in the most severe SVG stenosis was negatively correlated with the ratio of fibrous tissue (R2=0.192, P=0.012). The pathological changes of the patients with slow reflow or no reflow group and normal reflow group were (79.43 + 48.68 vs.47.28 + 29.14), and the proportion of SVG necrotic core tissue (23) in the two groups of patients with the lesion of SVG (23 .12 + 10.09 vs.14.39 + 7.79), the proportion of SVG dense calcified tissue in the lesion (7.33 + 4.66 vs.3.09 + 3.42), the proportion of SVG fibrous tissue (58.82 + 6.53 vs.66.32 + 5.55), the most severe necrotic core area (2.07 + 1.57 vs.0.75 +) in the lesion of SVG stenosis, and the ratio of the most serious necrotic core tissue in the lesion of SVG stenosis (23.38 + 12.72 vs.12.52 +%). The densest calcified tissue area of the most severe SVG stenosis (0.30 + 0.17 vs.0.07 + 0.13) and the ratio of dense calcified tissue in the most severe SVG stenosis (3.85 + 2.18 vs.1.30 + 2.44) were different, and all were statistically significant (P0.05). The single factor Logistic regression analysis showed that the systolic pressure level of the patients was [OR (95%CI): 1.093 (1.007~1.186). The proportion of P=0.033] and pathological SVG fibrous tissue [OR (95%CI): 1.241 (1.038~1.484), the increase of P=0.018] is the protective factor of SVG interventional therapy, and the total cholesterol (TC) level of the patient is [OR (95%CI): 0.311 (0.096~1.000) and P=0.050]. (95%CI): 0.786 (0.627~0.985), P=0.036], [OR (95%CI) of the most severe necrotic core area of the lesion of SVG: 0.328 (0.118~0.915), P=0.033], and the dense calcified tissue area of the most severe SVG stenosis, [OR (95%CI): 0 (0.000~0.120), which is a risk factor for the slow reflow or no reflow phenomenon in the interventional therapy. The proportion of collinear SVG fibrous tissue, the proportion of SVG necrotic core tissue, the proportion of SVG dense calcified tissue in the lesion, the most heavy necrotic core area of the lesion of SVG stenosis and the densest calcified tissue area of the SVG stricture of the lesion into VH-IVUS influencing factors, the multiple factor Logistics regression analysis should be used to show the influence of VH-IVUS. Factor [OR (95%CI): 3.800 (1.103~13.085), P=0.034] is an independent risk factor for slow reflow or no reflow phenomenon in SVG intervention therapy. The Kaplan-Meier survival curve Log-rank test showed that patients with slow reflow or no reflow group were compared with normal reflow patients at medium term follow-up, without MACE survival (66.7%vs.88.5%, P=0.118), and no fatal MI survival. The rate (66.7%vs.92.3%, P=0.056) and the survival rate of no severe angina (66.7%vs.88.5%, P=0.118) had a downward trend, the difference was not statistically significant (P0.05). There was a significant difference between the slow reflow or the non reflow group and the normal reflow group (83.3%vs.100%, P= 0.037) (P0.05). Single factor Cox regression analysis showed that there was a significant difference (P0.05). The proportion of SVG fibrous tissue in patients with [OR (95%CI) was 0.832 (0.706~0.980), and the increase of P=0.028] was the protective factor of MACE event after SVG intervention. The proportion of SVG necrotic core tissue was [OR (95%CI): 1.262 (1.066~1.493), P=0.007], and the increase of necrotic core tissue area of the lesion: 3.201 The risk factors of MACE event after SVG interventional therapy. Multiple factor Cox regression analysis showed that the proportion of SVG necrotic core tissue in patients with [OR (95%CI): 1.439 (1.055~1.962) and P=0.022] increased as an independent risk factor for MACE event after SVG interventional therapy. Conclusion: the ratio of plaque load to fibrous tissue is negative in the heaviest stenosis of disease variable SVG stenosis. The correlation was positively correlated with the ratio of fibrous tissue; the area of the most severe SVG stenosis was negatively correlated with the ratio of fibrous tissue. Single factor Logistic regression analysis suggested that higher systolic blood pressure and higher SVG fibrous tissue ratio were protective factors for slow reflow or non reflow of SVG interventional therapy. Total cholesterol level, the proportion of SVG necrotic core tissue, the proportion of SVG dense calcified tissue, the most heavy necrotic core area of SVG stenosis and the increase of the densest calcified tissue area in the most severe SVG stenosis are the risk factors for the slow reflow or no reflow phenomenon in the SVG interventional therapy. Multifactor Logistic regression analysis The VH-IVUS impact factor was an independent risk factor.Kaplan-Meier survival curve Log-rank test for slow reflow or no reflow phenomenon in SVG intervention therapy. The survival rate of no severe heart failure in patients with slow reflow or non reflow group was lower than that of normal reflow group at the mid-term follow-up. The test also indicated that there was no MACE in patients with slow reflow or no reflow group. The survival rate, the non fatal MI survival rate and the survival rate of no severe angina were all lower than those of the normal reflow group. The single factor Cox regression analysis suggested that the increase in the proportion of SVG fibrous tissue in the patients was the protective factor of the MACE event after SVG intervention, the proportion of the necrotic core tissue in the pathological changes, and the most serious necrosis core of the necrotic SVG stenosis. The increase of the product was a risk factor for the occurrence of MACE events after SVG intervention. Multiple factor Cox regression analysis showed that the increase in the proportion of SVG necrotic core tissue in the patients was an independent risk factor for the occurrence of MACE events after SVG intervention.
【学位授予单位】:天津医科大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R541.4
【参考文献】
相关期刊论文 前9条
1 陈伟伟;高润霖;刘力生;朱曼璐;王文;王拥军;吴兆苏;李惠君;顾东风;杨跃进;郑哲;蒋立新;胡盛寿;;《中国心血管病报告2015》概要[J];中国循环杂志;2016年06期
2 吴海波;徐殊;王强;都业君;赵科研;王辉山;;冠状动脉旁路移植术中应用内窥镜采集大隐静脉的技术要点及近期效果评价[J];中国胸心血管外科临床杂志;2015年01期
3 梁国庆;姜铁民;陈少伯;张建起;赵季红;;冠状动脉分叉病变的血管内超声虚拟组织学影像特点[J];介入放射学杂志;2012年04期
4 Vincent G DeMarco;Adam T Whaley-Connell;James R Sowers;Javad Habibi;Kevin C Dellsperger;;Contribution of oxidative stress to pulmonary arterial hypertension[J];World Journal of Cardiology;2010年10期
5 梁国庆;陈少伯;赵季红;姜铁民;李玉明;;血管内超声虚拟组织学成像的技术原理与临床应用的探讨[J];医疗卫生装备;2010年04期
6 陈鑫;徐明;石开虎;蒋英硕;汪黎明;邱志兵;肖立琼;赵海鹏;刘培生;王睿;郑林;;再次冠状动脉旁路移植术的临床应用[J];中国胸心血管外科临床杂志;2007年06期
7 胡晓鹏;许建屏;胡盛寿;宋云虎;孙寒松;徐波;;冠状动脉旁路移植术后桥血管造影特点分析[J];中国心血管病研究杂志;2007年02期
8 李世康;龙村;何巍;彭青云;周华富;郭建极;;高钾停搏液中镁离子对冠状动脉张力的影响[J];中华胸心血管外科杂志;2006年04期
9 李世康,龙村,程邦昌,刘唐威,何巍,陈铭伍,史世勇;组氨酸-色氨酸-酮戊二酸与威斯康星大学溶液对冠状动脉内皮细胞的影响[J];中华实验外科杂志;2003年04期
,本文编号:1914811
本文链接:https://www.wllwen.com/yixuelunwen/xxg/1914811.html