神经调节蛋白-1β及其受体信号系统对心肌细胞的调控作用及其机制研究
[Abstract]:The protective effect of new protective factors or new therapeutic strategies on cardiac muscle cell (CM) and its mechanism are of great significance for the treatment of heart disease and the improvement of cardiac function. Although many major breakthroughs have been made in the study of cardiac myocyte hypertrophy and ventricular remodeling, many research achievements have been made. Many of them are based on cardiac myocytes or ventricular structure itself, and the effect of the cardiac nerve regulation mechanism on the structure and function of cardiac myocytes remains to be studied from a broader and deeper level. The neuroregulatory protein -1 beta (neuregulin-1 beta, NRG-1 beta) can play a role in neurons by activating its tyrosine kinase receptor ErbB2 and ErbB4. A variety of regulatory functions, NRG-1 beta is likely to have the potential to play a unique regulatory role in the heart nerve. Up to now, there has been no discovery of the regulation of the NRG-1 beta by regulating the heart nerve. It is interesting that NRG-1 beta can also play an important regulatory function on cardiac myocytes. All the cells are the target tissues directly regulated by NRG-1 beta, which will make the regulatory mechanism of NRG-1 beta more complex. This topic will be based on a series of experimental studies based on the above research background. First, the ErbB2 and ErbB4 receptors of NRG-1 beta cultured neonatal rat cardiomyocytes and their downstream inositol -3- kinase (phosphoi) are studied. Nositide-3 kinase, PI3K) / protein kinase B (protein kinase B, PKB, Akt) and the expression of extracellular signal regulated kinase 1/2 (extracellular signal-regulated) and its effect on activation; secondly, the effect of beta and its related signal pathways on the important morphological and functional indexes of cardiac myocytes; Finally, using the cardiomyocytes with selective sympathetic innervation, the dual regulatory role of NRG-1 beta and its related signaling pathway on the nerve and myocardium is studied. Through the above series of studies, the role and mechanism of NRG-1 beta regulating cardiac myocytes directly or regulating the innervation of the cardiac myocytes by regulating their innervation are further elucidated. A new therapeutic strategy is proposed to enhance the ability or function of cardiac myocyte regeneration not only through the activity of NRG-1 beta and its receptor signal, but also through the regulatory role of the cardiac nerve in the NRG-1 beta and its receptor signaling system. Experimental study of white -1 beta activation of its receptor and its downstream signaling pathway in cardiac myocytes: NRG-1 beta activation of ErbB2 and ErbB4 receptors and its downstream PI3K/Akt and ERK1/2 is an important pathway for its biological effects. In order to study the expression of NRG-1 beta on ErbB2 and ErbB4 receptors and the downstream signaling molecules Akt and ERK1/2 expression of NRG-1 beta The effect of NRG-1 beta incubation and continuous incubation on the expression and activation of these molecules was observed by the cultured neonatal rat cardiomyocytes. The results showed that the acute incubation of NRG-1 beta did not affect the surface area of cardiac myocytes, while NRG-1 beta incubation could increase the myocardial cells. The surface area is beneficial to the growth and development of cardiac myocytes; the acute incubation of NRG-1 beta can not promote the expression of its receptor ErbB2 and ErbB4 and their downstream signal molecules Akt and ERK1/2, but can significantly increase their phosphorylation level. It indicates that the acute incubation of NRG-1 beta can activate its receptor and its related downstream cell signal transduction pathway; NRG-1 beta incubates continuously. It can not only promote the expression of its receptor ErbB2 and ErbB4 and their downstream signal molecules Akt and ERK1/2, but also increase their phosphorylation level significantly, thus improving the growth state of cardiac myocytes; the growth effect of NRG-1 beta myocytes can be blocked by PI3K inhibitor LY294002 or ERK1/2 inhibitor PD98059, but can not block the induction of NRG-1 beta. The effects of receptor ErbB2 and ErbB4 expression and phosphorylation show that NRG-1 beta acute incubation and NRG-1 beta incubation have different biological effects on cardiac myocytes with different biological effects of.NRG-1 beta incubation and NRG-1 beta incubation on the different biological effects of ErbB2 and ErbB4 and its downstream signal molecules Akt and ERK1 /2 expression and activation. The different treatment strategies may be taken in the future using NRG-1 beta for the treatment of corresponding cardiac disorders. The role of the second part of the neuromodulation protein -1 beta to improve the structure and function of cardiac myocytes is involved in the myosin heavy chain (myosin heavy chain, MHC), which can stimulate the light chain (myosin regulatory lig) of the myosin (myosin regulatory lig). The myocardial specific myosin light chain kinase (cardiac-specific myosin light-chain kinase, cMLCK) of HT chain, rMLC is an important factor regulating the assembly of myosine, the main gated channel of cardiac myocytes is the L- type calcium channel (L-type calcium channel) is the main channel to enter the cardiac myocytes, and the calcium ion three phosphate gland of the sarcoplasmic reticulum Sarco (Endo) plasmic reticulum Ca2+ ATPases or sarco (Endo) plasmic reticulum-Ca2+ pump, which regulates the coordination of contractile and diastolic circulation by transferring the cytoplasm to the sarcoplasmic reticulum. The above index is the key to the structure and function of the cardiac myocytes. Key factors, in order to detect the effect of NRG-1 beta on these indexes and their related mechanisms, we used the cultured neonatal rat cardiomyocytes to study the effects of NRG-1 beta and related signal pathways on these important morphological and functional indexes of cardiac myocytes, and the improvement of NRG-1 beta to improve the internal group of cardiac myocytes. The results showed that NRG-1 beta could promote the representative structural index MHC of cultured cardiac myocytes, the key kinase cMLCK in the cardiac myocytes, the expression of L- type calcium channel and SERCA2a, the P13K inhibitor LY294002 or ERK1/2 inhibitor PD98059 could inhibit the MHC, cMLCK, and calcium channel induced by NRG-1 beta. These results suggest that NRG-1 beta can effectively promote the expression of the basic structural molecules and functional molecules of cardiac myocyte contraction, thus improving the intrinsic composition of cardiac myocytes and thereby enhancing the potential ability of cardiac myocyte function, which is an effective treatment for NRG-1 beta in the future to improve cardiac function. The third part of the neuromodulation protein -1 beta enhances the fate of noradrenalin in cardiac myocytes, the fate of noradrenalin in cardiac myocytes is the prerequisite to guarantee and maintain the function of cardiac myocytes. On this basis, the function regulation of cardiac myocytes depends on the control of normal sympathetic nerve. The expression of adrenergic receptor (beta -adrenergic receptor, beta -AR) is an important manifestation of the fate of noradrenalin in cardiac myocytes. The activation of beta -AR is a must by the transmission of sympathetic innervation signal. This subject will establish an organotypic neck based on the dual regulatory effect of NRG-1 beta and its related signal pathways on the nerve and myocardium. A joint culture system of the superior cervical ganglion (SCG) tissue and scattered myocardial cells to study the cultured cardiac myocytes with or without sympathetic innervation, and then add NRG-1 beta incubation to change the fate potential of norepinephrine in the cardiomyocytes. The results show that NRG-1 beta incubation can make myocardial cells beta 1-AR. And the expression level of beta 2-AR was up-regulated, and the effect of selective sympathetic innervation on the up regulation of beta 1-AR and beta 2-AR expression was more obvious. NRG-1 beta incubation could further enhance the promotion effect of sympathetic innervation signal on the up regulation of the expression level of beta and beta 2-AR in cardiac myocytes, and Co culture of cardiac myocytes and sympathetic neurons. In the process, NRG-1 beta incubation can enhance the efficacy of sympathetic nerve signal to cardiac myocytes by increasing the number of sympathetic neurites. The PI3K inhibitor LY294002 or ERK1/2 inhibitor PD98059 inhibits the effect of NRG-1 beta induced up-regulated expression of beta 1-AR and beta 2-AR and promoting the growth of neuronal protrusion. The results suggest that NRG-1 beta has the effect of further enhancement of sympathetic innervation signal to the fate of noradrenaline, which is mediated by the PI3K/Akt and ERK1/2 cell signal transduction pathways. The results of this study are targeted at the targeted treatment strategy based on the NRG-1 beta and its receptor signaling system. The formulation provides a theoretical basis and a theoretical basis for reference.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R54
【相似文献】
相关期刊论文 前10条
1 李予蓉,商立军;成熟心肌细胞的培养技术[J];心脏杂志;2000年02期
2 蔡明清;心肌细胞再生和腔室重塑[J];中国分子心脏病学杂志;2002年01期
3 李娜;;心肌细胞可以再生[J];科技导报;2009年08期
4 薛惠文;章静波;;人类心肌细胞的更新[J];基础医学与临床;2009年07期
5 崔晓兵;;人类成年心肌细胞可以更新[J];生理科学进展;2010年06期
6 苏倩文;;心肌细胞可以再生[J];心血管病防治知识(科普版);2013年05期
7 周亮 ,曾晓荣,杨艳,刘智飞,李妙龄,裴杰;豚鼠心肌细胞急性酶分离方法[J];四川生理科学杂志;2000年02期
8 万朝敏,俞红吉,吴泰相,高云钦,周密,邓建军,王正荣;免疫损伤对离体培养心肌细胞力学特性的影响[J];中国医学物理学杂志;2000年02期
9 贾士东,修瑞娟;心肌细胞功能的研究[J];中国微循环;2000年03期
10 何作云,刘健;心肌细胞核钙信号的研究[J];重庆医学;2002年02期
相关会议论文 前10条
1 张保国;赵萍;张文杰;;钼对培养心肌细胞存活的影响[A];中国营养学会首届微量元素专题讨论会论文摘要汇编[C];1985年
2 房亚东;黄跃生;党永明;张家平;张东霞;宋华培;张琼;;上调微管相关蛋白4对缺氧早期心肌细胞活力影响的实验研究[A];中华医学会烧伤外科学分会2009年学术年会论文汇编[C];2009年
3 唐陶;王世骐;庄茁;;基底应变对心肌细胞的影响[A];北京力学会第14届学术年会论文集[C];2008年
4 何作云;刘健;王培勇;;心肌细胞核钙信号的研究[A];21世纪医学工程学术研讨会论文摘要汇编[C];2001年
5 何作云;刘健;;心肌细胞核钙信号的研究[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年
6 滕苗;黄跃生;党永明;房亚东;张琼;;微管干预剂对缺氧心肌细胞糖酵解途径关键酶的影响[A];第六届全国烧伤救治专题研讨会论文汇编[C];2009年
7 宋新爱;林元喜;樊小力;;心肌细胞的纯化[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年
8 刘兴茂;陈昭烈;刘红;熊福银;;心肌细胞体外三维培养的初步研究[A];中国生物工程学会第三次全国会员代表大会暨学术讨论会论文摘要集[C];2001年
9 熊江辉;李莹辉;聂捷琳;张晓铀;丁柏;;槲皮素对回转条件下心肌细胞—氧化氮合成的影响[A];中国宇航学会航天医学工程专业委员会、中国空间科学学会空间生命专业委员会联合学术研讨会论文摘要集[C];2001年
10 阳冬梅;吴才宏;程和平;;钙调蛋白对心肌细胞兴奋—收缩耦联的调节作用[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年
相关重要报纸文章 前10条
1 刘黎;荷兰培育心肌细胞取得进展[N];中国中医药报;2008年
2 编译 晓鱼;人类心肌细胞可再生[N];医药经济报;2009年
3 孙国根;心肌细胞的形成和再生有望被诱导[N];中国医药报;2012年
4 吴伟农;心肌细胞能自我修复[N];医药经济报;2001年
5 陈丹;移植的人体细胞可与豚鼠受体心肌同步跳动[N];科技日报;2012年
6 记者胡德荣;心肌细胞能体外培养[N];健康报;2002年
7 杨洋;骨髓细胞生成心肌细胞[N];卫生与生活报;2003年
8 吴理茂 李连达;中药在心肌细胞移植中的作用[N];中国医药报;2003年
9 ;急性心梗治疗获重要突破 心肌细胞可以再生[N];中国保险报;2003年
10 记者 张晔;基因调控让坏死的心肌细胞“复活”[N];科技日报;2011年
相关博士学位论文 前10条
1 吴东栋;硫化氢提高Cu/Zn-SOD和Mn-SOD活性的作用及其机制研究[D];复旦大学;2013年
2 徐磊;MMI-0100通过对心肌细胞及成纤维细胞中MK2的抑制作用降低心肌纤维化程度的研究[D];山东大学;2015年
3 牟永潮;基于纳米材料再造心肌组织生物学评价与心梗治疗研究[D];哈尔滨工业大学;2015年
4 李娜;PDE5抑制剂Sildenafi1对心梗后心衰线粒体能量代谢保护及机制研究[D];第四军医大学;2015年
5 陈亮;miR-199a对大鼠心肌细胞自噬的调控研究[D];第二军医大学;2015年
6 王晓丽;附子人参配伍对大鼠心肌细胞保护作用的研究[D];长春中医药大学;2015年
7 肖剑锋;碘化-N-正丁基氟哌啶醇对缺氧心肌细胞钙稳态的保护作用[D];汕头大学;2011年
8 张翠翠;MG53调节心脏辅助亚基KChIP2表达的分子机制及在心电稳态调节中的作用[D];南方医科大学;2014年
9 张海彬;miR-711在心肌缺血再灌注损伤中的作用机制[D];吉林大学;2016年
10 位庚;心肌微血管内皮细胞损伤对心肌细胞的影响及通络干预研究[D];河北医科大学;2016年
相关硕士学位论文 前10条
1 付丽;硫化氢后处理对大鼠缺氧/复氧心肌细胞的保护作用及机制研究[D];遵义医学院;2015年
2 黄玉洁;miR-218调控小鼠胚胎干细胞体外定向分化心肌细胞研究[D];浙江大学;2015年
3 李品雅;华蟾毒精对心肌细胞L型钙电流,钙瞬变和收缩力的影响[D];河北医科大学;2015年
4 刘洋;野蔷薇苷对H_2O_2诱导心肌细胞氧化损伤的保护作用及其机制研究[D];河北医科大学;2015年
5 朱燕梅;银杏叶提取物保护心肌细胞抗氧化损伤及其基于Keap1/Nrf2/ARE通路的作用机制[D];成都医学院;2015年
6 刘莉;心肌细胞TLR4促进心梗后心脏炎症反应的研究[D];宁夏医科大学;2015年
7 卢杏;体外转染CyclinA2基因对原代大鼠心肌细胞增殖的影响[D];新乡医学院;2015年
8 窦梦怡;缺氧时心肌细胞自噬的变化及其机理的研究[D];山西医科大学;2015年
9 兰晓东;微管解聚对心肌细胞电生理特性的影响及微管定量分析方法研究[D];第三军医大学;2015年
10 李熠;TGR5在高糖诱导小鼠心肌细胞凋亡中的作用及其机制[D];四川医科大学;2015年
,本文编号:2155390
本文链接:https://www.wllwen.com/yixuelunwen/xxg/2155390.html