当前位置:主页 > 医学论文 > 心血管论文 >

神经调节蛋白-1β及其受体信号系统对心肌细胞的调控作用及其机制研究

发布时间:2018-07-31 11:06
【摘要】:寻求新的保护因子或新的治疗策略对心肌细胞(cardiac muscle cell,CM)的保护作用及其机制对于心脏疾病的治疗和改善心功能具有重要的意义。虽然对心肌细胞肥大和心室重构的研究取得了许多重大的突破性进展,但这众多的研究成果大多是基于心肌细胞或心室结构本身而开展的,而对心脏神经调控机制对心肌细胞结构和功能的影响尚有待于从更广和更深的层次开展研究。神经调节蛋白-1β(neuregulin-1β,NRG-1β)可通过激活其酪氨酸激酶受体ErbB2和ErbB4而对神经元发挥多种调控作用,NRG-1β很可能具备对心脏神经发挥特有的调控作用的潜能,到目前为止,还没有发现NRG-1β通过调控心脏神经而对心肌发挥调控作用的报道。有趣的是,NRG-1β还可对心肌细胞直接发挥重要的调控功能。鉴于心脏神经和心肌细胞均为NRG-1β直接调控的靶组织,这将使NRG-1β对心功能的调节作用机制更为复杂。本课题将基于以上研究背景开展如下一系列实验研究:首先,研究NRG-1β对培养的新生大鼠心肌细胞的ErbB2和ErbB4受体及其下游的磷酸肌醇-3-激酶(phosphoinositide-3 kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,Akt)和细胞外信号调节激酶 1/2(extracellular signal-regulated kinase 1/2,ERK1/2)的表达及其激活的影响作用;其次,研究NRG-1β及其相关的信号通路对心肌细胞重要的形态指标和功能指标的影响作用;最终,利用具有选择性交感神经支配的心肌细胞,研究NRG-1β及其相关的信号通路对神经和心肌的双重调控作用。通过以上系列研究,以便进一步阐明NRG-1β直接调节心肌细胞或通过调节其神经支配而调节心肌细胞的作用及其机制。从而提出不仅通过NRG-1β及其受体信号的活性而直接增强心肌细胞再生能力或功能,而且还可通过NRG-1β及其受体信号系统介导的心脏神经调控作用而进一步增强其对心肌细胞结构和功能的调控作用的新的治疗策略。第一部分神经调节蛋白-1β在心肌细胞激活其受体及其下游信号通路的实验研究NRG-1β对心肌细胞ErbB2和ErbB4受体及其下游的PI3K/Akt和ERK1/2的激活是其发挥生物学效应的重要途径。为了研究NRG-1β对心肌细胞ErbB2和ErbB4受体及其下游的信号分子Akt和ERK1/2表达及其激活的影响作用,本课题利用培养的新生大鼠心肌细胞观察了 NRG-1β快速孵育和持续孵育对这些分子表达和激活的影响作用程度。结果显示,NRG-1β急性孵育不会对心肌细胞表面积产生影响,而NRG-1β持续孵育,则可增加心肌细胞的表面积,有利于心肌细胞的生长发育;NRG-1β急性孵育虽然不能促进其受体ErbB2和ErbB4及其下游信号分子Akt和ERK1/2的表达,但可显著提高其磷酸化水平,表明NRG-1β急性孵育可激活其受体及其相关的下游细胞信号转导通路;NRG-1β持续孵育不仅能促进其受体ErbB2和ErbB4及其下游信号分子Akt和ERK1/2的表达,而且还使其磷酸化水平显著上升,从而改善心肌细胞的生长状态;NRG-1β的促心肌细胞生长效应可被PI3K抑制剂LY294002或ERK1/2抑制剂PD98059所阻断,而不能阻断NRG-1β的诱导其受体ErbB2和ErbB4表达和磷酸化的效应。以上结果表明,NRG-1β急性孵育和NRG-1β持续孵育对心肌细胞具有不同的生物学效应。NRG-1β急性孵育和NRG-1β持续孵育对其受体ErbB2和ErbB4及其下游信号分子Akt和ERK1/2表达和激活的不同生物学效应揭示了将来利用NRG-1β治疗相应的心脏疾患所可能采取的不同治疗策略。第二部分神经调节蛋白-1β改善心肌细胞结构和功能指标的作用参与粗肌丝构成的肌球蛋白重链(myosin heavy chain,MHC)、能够激活调节性肌球蛋白轻链(myosin regulatory light chain,rMLC)的心肌特异的肌球蛋白轻链激酶(cardiac-specific myosin light-chain kinase,cMLCK)是调节肌节组装的重要因子,心肌细胞的主要门控通道L-型钙通道(L-type calcium channel,LTCC,Cav1.2)是Ca2+进入心肌细胞的主要通道,肌质网钙离子三磷酸腺苷酶或肌质网钙离子泵(sarco(endo)plasmic reticulum Ca2+ ATPases or sarco(endo)plasmic reticulum-Ca2+ pump,SERCA2a)通过将胞质内 Ca2+的转运至肌质网(sarcoplasmic reticulum,SR)内,从而调节收缩和舒张循环的协调性。以上指标是影响心肌细胞结构和功能的关键因素,为了检测NRG-1β对这些指标的影响作用及其相关机制,本课题利用培养的新生大鼠心肌细胞,研究了 NRG-1β及其相关的信号通路对心肌细胞的这些重要形态指标和功能指标的影响作用,并深入分析了 NRG-1β改善心肌细胞内在组分的潜能。结果显示,NRG-1β可分别促进培养的心肌细胞代表性结构指标MHC、对心肌细胞内的关键激酶cMLCK、代表性功能指标L-型钙通道和SERCA2a的表达,P13K抑制剂LY294002或ERK1/2抑制剂PD98059可抑制NRG-1β引起的促心肌细胞MHC、cMLCK、L-型钙通道和SERCA2a表达上调的作用。这些结果表明,NRG-1β可有效促进对心肌细胞收缩的基本结构分子和功能分子的表达,从而改善心肌细胞的内在组分构成,并由此而提高心肌细胞功能的潜在能力,这是NRG-1β将来有可能成为改善心功能的有效治疗分子的重要实验依据。第三部分神经调节蛋白-1β增强心肌细胞去甲腺素能命运的潜能心肌细胞的去甲肾上腺素能命运是保证和维持心肌细胞功能的前提,在此基础上,心肌细胞的功能调控还有赖于正常交感神经的支配。心肌细胞β-肾上腺素能受体(β-adrenergic receptor,β-AR)的表达是心肌细胞的去甲肾上腺素能命运的重要体现,β-AR的激活是交感神经支配信号传递的必由途经。本课题将根据NRG-1β及其相关的信号通路对神经和心肌的双重调控作用,建立器官型的颈上神经节(superior cervical ganglion,SCG)组织块和分散心肌细胞的联合培养体系,研究有或没有交感神经支配的培养的心肌细胞,再附加NRG-1β孵育的条件下,心肌细胞去甲肾上腺素能命运潜能的变化。结果显示,NRG-1β孵育可使心肌细胞β1-AR和β2-AR的表达水平上调,而选择性交感神经支配使心肌细胞β1-AR和β2-AR表达水平上调的效应更加明显,NRG-1β孵育可进一步增强交感神经支配信号对心肌细胞β1-AR和β2-AR表达水平上调的促进效应;在心肌细胞与交感神经元联合培养的过程中,应用NRG-1β孵育能够通过增加交感神经元突起的数目增强交感神经信号对心肌细胞支配的效能;PI3K抑制剂LY294002或ERK1/2抑制剂PD98059可抑制NRG-1β引起的促心肌细胞β1-AR和β2-AR表达上调作用和促神经元突起生长的效应。这些结果表明,NRG-1β具有进一步增强交感神经支配信号的促心肌细胞去甲肾上腺素能命运的效应,这一效应是通过PI3K/Akt和ERK1/2细胞信号转导通路介导的。本课题的研究结果对于以NRG-1β及其受体信号系统为主导的具有针对性的治疗策略的制定提供了具有指导意义的理论基础和具有参考价值的实验依据。
[Abstract]:The protective effect of new protective factors or new therapeutic strategies on cardiac muscle cell (CM) and its mechanism are of great significance for the treatment of heart disease and the improvement of cardiac function. Although many major breakthroughs have been made in the study of cardiac myocyte hypertrophy and ventricular remodeling, many research achievements have been made. Many of them are based on cardiac myocytes or ventricular structure itself, and the effect of the cardiac nerve regulation mechanism on the structure and function of cardiac myocytes remains to be studied from a broader and deeper level. The neuroregulatory protein -1 beta (neuregulin-1 beta, NRG-1 beta) can play a role in neurons by activating its tyrosine kinase receptor ErbB2 and ErbB4. A variety of regulatory functions, NRG-1 beta is likely to have the potential to play a unique regulatory role in the heart nerve. Up to now, there has been no discovery of the regulation of the NRG-1 beta by regulating the heart nerve. It is interesting that NRG-1 beta can also play an important regulatory function on cardiac myocytes. All the cells are the target tissues directly regulated by NRG-1 beta, which will make the regulatory mechanism of NRG-1 beta more complex. This topic will be based on a series of experimental studies based on the above research background. First, the ErbB2 and ErbB4 receptors of NRG-1 beta cultured neonatal rat cardiomyocytes and their downstream inositol -3- kinase (phosphoi) are studied. Nositide-3 kinase, PI3K) / protein kinase B (protein kinase B, PKB, Akt) and the expression of extracellular signal regulated kinase 1/2 (extracellular signal-regulated) and its effect on activation; secondly, the effect of beta and its related signal pathways on the important morphological and functional indexes of cardiac myocytes; Finally, using the cardiomyocytes with selective sympathetic innervation, the dual regulatory role of NRG-1 beta and its related signaling pathway on the nerve and myocardium is studied. Through the above series of studies, the role and mechanism of NRG-1 beta regulating cardiac myocytes directly or regulating the innervation of the cardiac myocytes by regulating their innervation are further elucidated. A new therapeutic strategy is proposed to enhance the ability or function of cardiac myocyte regeneration not only through the activity of NRG-1 beta and its receptor signal, but also through the regulatory role of the cardiac nerve in the NRG-1 beta and its receptor signaling system. Experimental study of white -1 beta activation of its receptor and its downstream signaling pathway in cardiac myocytes: NRG-1 beta activation of ErbB2 and ErbB4 receptors and its downstream PI3K/Akt and ERK1/2 is an important pathway for its biological effects. In order to study the expression of NRG-1 beta on ErbB2 and ErbB4 receptors and the downstream signaling molecules Akt and ERK1/2 expression of NRG-1 beta The effect of NRG-1 beta incubation and continuous incubation on the expression and activation of these molecules was observed by the cultured neonatal rat cardiomyocytes. The results showed that the acute incubation of NRG-1 beta did not affect the surface area of cardiac myocytes, while NRG-1 beta incubation could increase the myocardial cells. The surface area is beneficial to the growth and development of cardiac myocytes; the acute incubation of NRG-1 beta can not promote the expression of its receptor ErbB2 and ErbB4 and their downstream signal molecules Akt and ERK1/2, but can significantly increase their phosphorylation level. It indicates that the acute incubation of NRG-1 beta can activate its receptor and its related downstream cell signal transduction pathway; NRG-1 beta incubates continuously. It can not only promote the expression of its receptor ErbB2 and ErbB4 and their downstream signal molecules Akt and ERK1/2, but also increase their phosphorylation level significantly, thus improving the growth state of cardiac myocytes; the growth effect of NRG-1 beta myocytes can be blocked by PI3K inhibitor LY294002 or ERK1/2 inhibitor PD98059, but can not block the induction of NRG-1 beta. The effects of receptor ErbB2 and ErbB4 expression and phosphorylation show that NRG-1 beta acute incubation and NRG-1 beta incubation have different biological effects on cardiac myocytes with different biological effects of.NRG-1 beta incubation and NRG-1 beta incubation on the different biological effects of ErbB2 and ErbB4 and its downstream signal molecules Akt and ERK1 /2 expression and activation. The different treatment strategies may be taken in the future using NRG-1 beta for the treatment of corresponding cardiac disorders. The role of the second part of the neuromodulation protein -1 beta to improve the structure and function of cardiac myocytes is involved in the myosin heavy chain (myosin heavy chain, MHC), which can stimulate the light chain (myosin regulatory lig) of the myosin (myosin regulatory lig). The myocardial specific myosin light chain kinase (cardiac-specific myosin light-chain kinase, cMLCK) of HT chain, rMLC is an important factor regulating the assembly of myosine, the main gated channel of cardiac myocytes is the L- type calcium channel (L-type calcium channel) is the main channel to enter the cardiac myocytes, and the calcium ion three phosphate gland of the sarcoplasmic reticulum Sarco (Endo) plasmic reticulum Ca2+ ATPases or sarco (Endo) plasmic reticulum-Ca2+ pump, which regulates the coordination of contractile and diastolic circulation by transferring the cytoplasm to the sarcoplasmic reticulum. The above index is the key to the structure and function of the cardiac myocytes. Key factors, in order to detect the effect of NRG-1 beta on these indexes and their related mechanisms, we used the cultured neonatal rat cardiomyocytes to study the effects of NRG-1 beta and related signal pathways on these important morphological and functional indexes of cardiac myocytes, and the improvement of NRG-1 beta to improve the internal group of cardiac myocytes. The results showed that NRG-1 beta could promote the representative structural index MHC of cultured cardiac myocytes, the key kinase cMLCK in the cardiac myocytes, the expression of L- type calcium channel and SERCA2a, the P13K inhibitor LY294002 or ERK1/2 inhibitor PD98059 could inhibit the MHC, cMLCK, and calcium channel induced by NRG-1 beta. These results suggest that NRG-1 beta can effectively promote the expression of the basic structural molecules and functional molecules of cardiac myocyte contraction, thus improving the intrinsic composition of cardiac myocytes and thereby enhancing the potential ability of cardiac myocyte function, which is an effective treatment for NRG-1 beta in the future to improve cardiac function. The third part of the neuromodulation protein -1 beta enhances the fate of noradrenalin in cardiac myocytes, the fate of noradrenalin in cardiac myocytes is the prerequisite to guarantee and maintain the function of cardiac myocytes. On this basis, the function regulation of cardiac myocytes depends on the control of normal sympathetic nerve. The expression of adrenergic receptor (beta -adrenergic receptor, beta -AR) is an important manifestation of the fate of noradrenalin in cardiac myocytes. The activation of beta -AR is a must by the transmission of sympathetic innervation signal. This subject will establish an organotypic neck based on the dual regulatory effect of NRG-1 beta and its related signal pathways on the nerve and myocardium. A joint culture system of the superior cervical ganglion (SCG) tissue and scattered myocardial cells to study the cultured cardiac myocytes with or without sympathetic innervation, and then add NRG-1 beta incubation to change the fate potential of norepinephrine in the cardiomyocytes. The results show that NRG-1 beta incubation can make myocardial cells beta 1-AR. And the expression level of beta 2-AR was up-regulated, and the effect of selective sympathetic innervation on the up regulation of beta 1-AR and beta 2-AR expression was more obvious. NRG-1 beta incubation could further enhance the promotion effect of sympathetic innervation signal on the up regulation of the expression level of beta and beta 2-AR in cardiac myocytes, and Co culture of cardiac myocytes and sympathetic neurons. In the process, NRG-1 beta incubation can enhance the efficacy of sympathetic nerve signal to cardiac myocytes by increasing the number of sympathetic neurites. The PI3K inhibitor LY294002 or ERK1/2 inhibitor PD98059 inhibits the effect of NRG-1 beta induced up-regulated expression of beta 1-AR and beta 2-AR and promoting the growth of neuronal protrusion. The results suggest that NRG-1 beta has the effect of further enhancement of sympathetic innervation signal to the fate of noradrenaline, which is mediated by the PI3K/Akt and ERK1/2 cell signal transduction pathways. The results of this study are targeted at the targeted treatment strategy based on the NRG-1 beta and its receptor signaling system. The formulation provides a theoretical basis and a theoretical basis for reference.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R54

【相似文献】

相关期刊论文 前10条

1 李予蓉,商立军;成熟心肌细胞的培养技术[J];心脏杂志;2000年02期

2 蔡明清;心肌细胞再生和腔室重塑[J];中国分子心脏病学杂志;2002年01期

3 李娜;;心肌细胞可以再生[J];科技导报;2009年08期

4 薛惠文;章静波;;人类心肌细胞的更新[J];基础医学与临床;2009年07期

5 崔晓兵;;人类成年心肌细胞可以更新[J];生理科学进展;2010年06期

6 苏倩文;;心肌细胞可以再生[J];心血管病防治知识(科普版);2013年05期

7 周亮 ,曾晓荣,杨艳,刘智飞,李妙龄,裴杰;豚鼠心肌细胞急性酶分离方法[J];四川生理科学杂志;2000年02期

8 万朝敏,俞红吉,吴泰相,高云钦,周密,邓建军,王正荣;免疫损伤对离体培养心肌细胞力学特性的影响[J];中国医学物理学杂志;2000年02期

9 贾士东,修瑞娟;心肌细胞功能的研究[J];中国微循环;2000年03期

10 何作云,刘健;心肌细胞核钙信号的研究[J];重庆医学;2002年02期

相关会议论文 前10条

1 张保国;赵萍;张文杰;;钼对培养心肌细胞存活的影响[A];中国营养学会首届微量元素专题讨论会论文摘要汇编[C];1985年

2 房亚东;黄跃生;党永明;张家平;张东霞;宋华培;张琼;;上调微管相关蛋白4对缺氧早期心肌细胞活力影响的实验研究[A];中华医学会烧伤外科学分会2009年学术年会论文汇编[C];2009年

3 唐陶;王世骐;庄茁;;基底应变对心肌细胞的影响[A];北京力学会第14届学术年会论文集[C];2008年

4 何作云;刘健;王培勇;;心肌细胞核钙信号的研究[A];21世纪医学工程学术研讨会论文摘要汇编[C];2001年

5 何作云;刘健;;心肌细胞核钙信号的研究[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年

6 滕苗;黄跃生;党永明;房亚东;张琼;;微管干预剂对缺氧心肌细胞糖酵解途径关键酶的影响[A];第六届全国烧伤救治专题研讨会论文汇编[C];2009年

7 宋新爱;林元喜;樊小力;;心肌细胞的纯化[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年

8 刘兴茂;陈昭烈;刘红;熊福银;;心肌细胞体外三维培养的初步研究[A];中国生物工程学会第三次全国会员代表大会暨学术讨论会论文摘要集[C];2001年

9 熊江辉;李莹辉;聂捷琳;张晓铀;丁柏;;槲皮素对回转条件下心肌细胞—氧化氮合成的影响[A];中国宇航学会航天医学工程专业委员会、中国空间科学学会空间生命专业委员会联合学术研讨会论文摘要集[C];2001年

10 阳冬梅;吴才宏;程和平;;钙调蛋白对心肌细胞兴奋—收缩耦联的调节作用[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年

相关重要报纸文章 前10条

1 刘黎;荷兰培育心肌细胞取得进展[N];中国中医药报;2008年

2 编译 晓鱼;人类心肌细胞可再生[N];医药经济报;2009年

3 孙国根;心肌细胞的形成和再生有望被诱导[N];中国医药报;2012年

4 吴伟农;心肌细胞能自我修复[N];医药经济报;2001年

5 陈丹;移植的人体细胞可与豚鼠受体心肌同步跳动[N];科技日报;2012年

6 记者胡德荣;心肌细胞能体外培养[N];健康报;2002年

7 杨洋;骨髓细胞生成心肌细胞[N];卫生与生活报;2003年

8 吴理茂 李连达;中药在心肌细胞移植中的作用[N];中国医药报;2003年

9 ;急性心梗治疗获重要突破 心肌细胞可以再生[N];中国保险报;2003年

10 记者 张晔;基因调控让坏死的心肌细胞“复活”[N];科技日报;2011年

相关博士学位论文 前10条

1 吴东栋;硫化氢提高Cu/Zn-SOD和Mn-SOD活性的作用及其机制研究[D];复旦大学;2013年

2 徐磊;MMI-0100通过对心肌细胞及成纤维细胞中MK2的抑制作用降低心肌纤维化程度的研究[D];山东大学;2015年

3 牟永潮;基于纳米材料再造心肌组织生物学评价与心梗治疗研究[D];哈尔滨工业大学;2015年

4 李娜;PDE5抑制剂Sildenafi1对心梗后心衰线粒体能量代谢保护及机制研究[D];第四军医大学;2015年

5 陈亮;miR-199a对大鼠心肌细胞自噬的调控研究[D];第二军医大学;2015年

6 王晓丽;附子人参配伍对大鼠心肌细胞保护作用的研究[D];长春中医药大学;2015年

7 肖剑锋;碘化-N-正丁基氟哌啶醇对缺氧心肌细胞钙稳态的保护作用[D];汕头大学;2011年

8 张翠翠;MG53调节心脏辅助亚基KChIP2表达的分子机制及在心电稳态调节中的作用[D];南方医科大学;2014年

9 张海彬;miR-711在心肌缺血再灌注损伤中的作用机制[D];吉林大学;2016年

10 位庚;心肌微血管内皮细胞损伤对心肌细胞的影响及通络干预研究[D];河北医科大学;2016年

相关硕士学位论文 前10条

1 付丽;硫化氢后处理对大鼠缺氧/复氧心肌细胞的保护作用及机制研究[D];遵义医学院;2015年

2 黄玉洁;miR-218调控小鼠胚胎干细胞体外定向分化心肌细胞研究[D];浙江大学;2015年

3 李品雅;华蟾毒精对心肌细胞L型钙电流,钙瞬变和收缩力的影响[D];河北医科大学;2015年

4 刘洋;野蔷薇苷对H_2O_2诱导心肌细胞氧化损伤的保护作用及其机制研究[D];河北医科大学;2015年

5 朱燕梅;银杏叶提取物保护心肌细胞抗氧化损伤及其基于Keap1/Nrf2/ARE通路的作用机制[D];成都医学院;2015年

6 刘莉;心肌细胞TLR4促进心梗后心脏炎症反应的研究[D];宁夏医科大学;2015年

7 卢杏;体外转染CyclinA2基因对原代大鼠心肌细胞增殖的影响[D];新乡医学院;2015年

8 窦梦怡;缺氧时心肌细胞自噬的变化及其机理的研究[D];山西医科大学;2015年

9 兰晓东;微管解聚对心肌细胞电生理特性的影响及微管定量分析方法研究[D];第三军医大学;2015年

10 李熠;TGR5在高糖诱导小鼠心肌细胞凋亡中的作用及其机制[D];四川医科大学;2015年



本文编号:2155390

资料下载
论文发表

本文链接:https://www.wllwen.com/yixuelunwen/xxg/2155390.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户97c7d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com