煤炭依赖型区域生态承载力安全预警评价研究——基于山西省的实证分析
发布时间:2019-03-20 14:20
【摘要】:煤炭依赖型区域是高生态风险区域。以该区域生态承载力运作系统为出发点,选取16项代表性技术指标,采用遗传算法优化BP神经网络设计生态承载力安全预警评价技术模型,并以山西省为实证研究对象进行预警分析。结果表明:基于GA-BP算法的预警技术有助于实现煤炭依赖型区域生态承载力风险预警;未来10年内,历史生态债务将在一定程度上削弱该区域生态风险控制的效果;必须采取进一步措施,方能降低生态承载力警情发生的可能性。
[Abstract]:Coal-dependent area is a high ecological risk area. Taking the operation system of ecological carrying capacity in this region as the starting point, 16 representative technical indexes are selected, and genetic algorithm is used to optimize the BP neural network to design the technical model of ecological carrying capacity security early warning and evaluation. And take Shanxi Province as the empirical research object to carry on the early warning analysis. The results show that the early warning technology based on GA-BP algorithm is helpful to realize the risk early-warning of ecological carrying capacity in coal-dependent regions, and the historical ecological debt will weaken the effect of ecological risk control in the region to a certain extent in the next 10 years. Further measures must be taken to reduce the possibility of ecological bearing alarm.
【作者单位】: 山西财经大学管理科学与工程学院;
【基金】:教育部人文社会科学研究青年基金项目“煤炭依赖型区域生态风险监控机制及规避路径研究”(13YJCZH137) 山西省高等学校科技创新项目“煤炭型矿业城市生态承载力动态预警设计及应用”(20121007)
【分类号】:X826;F426.21
[Abstract]:Coal-dependent area is a high ecological risk area. Taking the operation system of ecological carrying capacity in this region as the starting point, 16 representative technical indexes are selected, and genetic algorithm is used to optimize the BP neural network to design the technical model of ecological carrying capacity security early warning and evaluation. And take Shanxi Province as the empirical research object to carry on the early warning analysis. The results show that the early warning technology based on GA-BP algorithm is helpful to realize the risk early-warning of ecological carrying capacity in coal-dependent regions, and the historical ecological debt will weaken the effect of ecological risk control in the region to a certain extent in the next 10 years. Further measures must be taken to reduce the possibility of ecological bearing alarm.
【作者单位】: 山西财经大学管理科学与工程学院;
【基金】:教育部人文社会科学研究青年基金项目“煤炭依赖型区域生态风险监控机制及规避路径研究”(13YJCZH137) 山西省高等学校科技创新项目“煤炭型矿业城市生态承载力动态预警设计及应用”(20121007)
【分类号】:X826;F426.21
【参考文献】
相关期刊论文 前6条
1 余凡;赵英时;李海涛;;基于遗传BP神经网络的主被动遥感协同反演土壤水分[J];红外与毫米波学报;2012年03期
2 宋宝莉;曹丹;刘庚达;;突破拐点:资源型企业的生态化发展[J];科技管理研究;2013年08期
3 陈成忠;林振山;陈玲玲;;生态足迹与生态承载力非线性动力学分析[J];生态学报;2006年11期
4 任永泰;马雪倩;张贵杰;;基于GA-SVM的水资源可持续利用评价[J];数学的实践与认识;2013年03期
5 徐中民,张志强,程国栋,陈东景;中国1999年生态足迹计算与发展能力分析[J];应用生态学报;2003年02期
6 曾维华;王华东;薛纪渝;叶文虎;关伯仁;梅凤桥;;人口、资源与环境协调发展关键问题之一——环境承载力研究[J];中国人口.资源与环境;1991年02期
【共引文献】
相关期刊论文 前10条
1 智颖飙;王再岚;邓先德;韩雪;张纪卯;李静敏;杨淑宝;;基于地球生态负债的区域生态承载力研究——以安徽省为例[J];安徽大学学报(自然科学版);2010年01期
2 曹瑾;杨s,
本文编号:2444294
本文链接:https://www.wllwen.com/guanlilunwen/shengchanguanlilunwen/2444294.html