当前位置:主页 > 科技论文 > 数学论文 >

一类脉冲分数阶微分方程广义反周期边值问题解的存在性(英文)

发布时间:2018-04-25 19:18

  本文选题:脉冲分数阶微分方程 + 广义反周期边值问题 ; 参考:《应用数学》2017年01期


【摘要】:本文研究一类脉冲分数阶微分方程广义反周期边值问题解的存在性,利用不动点理论得到一些解的存在性结论,推广和补充了已有的一些结论.此外给出一个实例说明论文的主要结果的可行性.
[Abstract]:In this paper, we study the existence of solutions for a class of generalized counterperiodic boundary value problems for impulsive fractional differential equations. By using the fixed point theory, we obtain some existence results of solutions, and extend and supplement some existing results. In addition, an example is given to illustrate the feasibility of the main results of the paper.
【作者单位】: 安徽大学数学科学学院;
【基金】:Supported by the Anhui Provincial Natural Science Foundation(1408085MA02,1508085QA01,1608085MA12) the Key Foundation of Anhui Education Bureau(KJ2012A019,KJ2013A028,KJ2014A010) 211 Project of Anhui University(02303303-33030011,J18520207,XJYJXKC04) the National Natural Science Foundation of China(11271371,11301004,51479215)
【分类号】:O175.8

【相似文献】

相关期刊论文 前10条

1 杨爱军;纪德红;葛渭高;;二阶共振周期边值问题多解的存在性[J];数学的实践与认识;2008年24期

2 黎定仕;刘文斌;徐丛丛;张伟伟;;非线性四阶周期边值问题多个正解的存在性[J];数学的实践与认识;2008年16期

3 孙博;葛渭高;;一类二阶奇异周期边值问题正解的存在性[J];数学的实践与认识;2010年01期

4 佟永鹏;;四阶周期边值问题解的存在性与唯一性[J];甘肃科学学报;2010年03期

5 王峰;孙经先;崔玉军;;零点指数的计算及其对二阶周期边值问题的应用[J];系统科学与数学;2011年08期

6 张凤琴;带有逐段常数滞后变量的二阶非线性微分方程的边值问题与周期边值问题[J];工程数学学报;1993年01期

7 俞元洪,,陈文灯;二阶非线性微分方程的周期边值问题[J];中国科学院研究生院学报;1994年01期

8 张松枝,李育文,杨明增;一类周期边值问题解的存在性[J];河南教育学院学报(自然科学版);1997年04期

9 裴明鹤;一类四阶非线性常微分方程的周期边值问题的存在性[J];吉林师范学院学报;1998年05期

10 马如云;非线性周期边值问题2π周期解的个数[J];数学年刊A辑(中文版);1999年03期

相关博士学位论文 前3条

1 马慧莉;几类差分方程周期边值问题研究[D];西北师范大学;2008年

2 宾红华;变分法在离散哈密尔顿系统周期边值问题中的应用[D];湖南大学;2006年

3 徐嘉;几类二阶常微分方程周期边值问题正解的全局结构[D];西北师范大学;2009年

相关硕士学位论文 前10条

1 徐慈;几类微分方程周期边值问题正解的研究[D];南京财经大学;2015年

2 郭丽;微分方程周期边值问题与周期解[D];湖南科技大学;2015年

3 姜田利;几类二阶周期及反周期边值问题的解[D];曲阜师范大学;2009年

4 张明;非线性常微分方程的周期边值问题[D];山东师范大学;2009年

5 郭长辉;四阶周期边值问题解的存在性[D];西北师范大学;2009年

6 李永玲;带参数的周期边值问题正解的存在性[D];兰州大学;2009年

7 刘英;几类奇异微方程周期边值问题的可解性[D];山东师范大学;2010年

8 吴邦;非线性周期边值问题解的存在性[D];福州大学;2005年

9 苏文龙;非线性二阶方程周期边值问题解的存在性[D];吉林大学;2006年

10 王丽颖;二阶离散周期边值问题的多重正解[D];东北师范大学;2006年



本文编号:1802611

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/1802611.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1fdf1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com