耦合神经元系统的放电机理及同步研究
[Abstract]:The biological neuron system is composed of a large number of nerve cells. These nerve cells carry out abundant information transmission activities through the discharge, which constitute the information network of the biological neurons to support the normal life activities of the organism. The transmission of information between neuronal cells is realized by peak discharge, and different discharge modes encode different information. Therefore, we can explore the law and dynamic characteristics of neuronal discharge by studying the peak discharge of neuron system. Synchronization is ubiquitous in nature. In neuron system, the synchronization of discharge between two neuronal cells is of great significance to the memory, information balance and memory of the nervous system. The synchronous discharge between two nerve cells is the basis of the whole neural network, so the synchronization of the coupled neuron system between the two nerve cells is the key to the information transmission of the whole neural network. In this paper, the following studies have been done: (1) based on the chemical synaptic coupling of a single neuron system, the stability of the coupled neuron system is judged from the stability of a single neuron system, and the Hoppe bifurcation is obtained. By changing one parameter of the system, the dynamical characteristics of the coupled system with single parameter variation are studied, and the rich dynamical characteristics of the neuron system such as doubling bifurcation, periodic bifurcation and chaos are obtained. (2) the two-parameter plane bifurcation diagram of the system is given. By changing the two system parameters at the same time, the discharge characteristics of the coupled system in a particular value area are clearly displayed by different colors representing different discharge cycles. It can provide theoretical basis for the study of neural coding mode in medical experiments. The discrete third parameter observed the variation trend of two-parameter bifurcation and realized the study of coupling neuron dynamics through multi-parameter. (3) the synchronization of neurons was studied from the coupling strength of coupling neurons. Firstly, the relationship between the coupling strength and the system parameters is obtained theoretically, and the theory of stability equivalence and Lyapunov function is used in the theoretical derivation. It is difficult to achieve complete synchronization in the coupled neuron system under the weak coupling strength, but it is easy to achieve complete synchronization under the strong coupling strength. Then the synchronization of the coupled system under the joint action of the system parameters and the coupling strength is studied, and the synchronization diagram of whether the coupling system can achieve synchronization under the influence of the system parameters and the coupling strength is given. The effects of each system parameter on the synchronization of coupled systems are obtained. (4) the effects of delay and noise on the synchronization of coupled systems are considered. The factors of delay and noise are added to the coupled system respectively. Through numerical simulation, it can be found that the appropriate time delay and external noise are favorable to the synchronization of the coupled neuron system and the information transmission of the neural network can be promoted. However, the synchronization diagram of the coupled system with time-delay and coupling strength is given to reveal the synchronization between the time-delay and the noise failure system. (5) finally, the discharge period of the coupled subsystem under different coupling strengths is given. By comparing the discharge of the two subsystems under the same coupling strength, the influence of coupling strength on the coupling system is revealed. In this paper, the dynamic properties of coupled neuron system under the influence of multiple parameters and the coupling neuron synchronization under different parameters can be fully revealed, and how to achieve synchronization of coupled system to promote the information transmission of neural network can be obtained. The results can provide theoretical basis for medical physiological experiments and artificial intelligence.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:Q42;O175
【参考文献】
相关期刊论文 前10条
1 FAN DengGui;WANG QingYun;;Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J];Science China(Technological Sciences);2017年07期
2 李洪明;张素丽;;恒电流刺激下神经元Chay模型的Hopf分岔分析[J];太原理工大学学报;2013年01期
3 徐国丽;邬开俊;解宝;;Ca~(2+)振荡模型的动力学行为及耦合同步性研究[J];兰州交通大学学报;2012年03期
4 曹淑红;段利霞;唐旭晖;赵勇;;具有时滞的耦合Hindmarsh-Rose神经元系统的放电模式[J];动力学与控制学报;2012年01期
5 翟德红;段利霞;唐旭晖;赵勇;樊登贵;陆启韶;;耦合Hindmarsh-Rose神经元的同步放电模式及转迁[J];动力学与控制学报;2011年03期
6 范云;张荣;过榴晓;;时变耦合网络的完全同步[J];江南大学学报(自然科学版);2011年03期
7 李远华;;非兴奋型生物细胞内钙离子浓度振荡的数值仿真[J];淮南师范学院学报;2011年03期
8 郑艳红;王青云;;生物神经网络系统的动力学研究进展及展望[J];复杂系统与复杂性科学;2010年Z1期
9 杨卓琴;;神经元电活动不同节律模式的几种变化过程[J];物理学报;2010年08期
10 ;Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks[J];Science China(Chemistry);2010年08期
相关博士学位论文 前5条
1 王关平;复杂时滞耦合系统的同步诱发机理及调控机制研究[D];兰州理工大学;2016年
2 李玉叶;三类神经元网络的时空动力学行为研究[D];陕西师范大学;2012年
3 刘玉亮;外电场作用下神经元动力学分析与同步控制[D];天津大学;2011年
4 车艳秋;外电场下神经元的分岔研究[D];天津大学;2008年
5 段玉斌;神经起步点放电峰峰间期的非线性动力学[D];第四军医大学;2002年
相关硕士学位论文 前8条
1 吴会霞;Chay神经元放电的相位同步与转迁过程[D];南京理工大学;2015年
2 王利利;Hindmarsh-Rose神经元网络的同步研究[D];广西师范大学;2014年
3 王丽;自适应时滞神经元网络动力学行为的研究[D];鲁东大学;2013年
4 徐国丽;神经元模型的动力学特性研究[D];兰州交通大学;2013年
5 贾利平;非线性耦合Hindmarsh-Rose神经元同步迁移[D];兰州理工大学;2012年
6 吴望生;耦合神经元系统的同步研究[D];广西师范大学;2012年
7 王璐;神经元模型中的非线性动力学现象[D];陕西师范大学;2011年
8 薛良;ML神经元网络的电路实现与分析[D];天津大学;2008年
,本文编号:2238870
本文链接:https://www.wllwen.com/kejilunwen/yysx/2238870.html