用于非线性动力分析的一种高效精细积分单步法
发布时间:2018-10-26 13:51
【摘要】:针对非线性动力状态方程v=H·v+f(v,t),结合精细积分法和Romberg数值积分,对计算过程中待求的v_(k+j/m)(j=1,2,…,m),利用当前时刻vk,通过二阶龙格库塔法进行预估,提出了一种避免状态矩阵求逆的高效精细积分单步法。该方法计算格式统一,易于编程,通过选取m值,可进行不同计算精度的计算。与两种单步法、一次预-校法及预估校正-辛时间子域法进行数值比较,计算结果表明,该方法具有高精度、高效率及较好的稳定性。在求解多自由度、强非线性动力响应问题中具有较大优势。
[Abstract]:For the nonlinear dynamic equation of state (VX H v f (VT), combining the precise integration method and the Romberg numerical integration, the vk / j / m (J _ (k / j / m) (J _ (k / j / m), which is to be solved in the process of calculation, is studied. , m), uses the current time vk, to predict by the second order Runge-Kutta method and proposes an efficient precise integration single-step method to avoid the inversion of the state matrix. This method has the advantages of uniform calculation format and easy programming. By selecting m value, different calculation accuracy can be carried out. Compared with two single-step methods, one-step precalibration method and predictor-correction-symplectic time subdomain method, the numerical results show that the proposed method has high accuracy, high efficiency and good stability. It has great advantages in solving multi-degree-of-freedom and strongly nonlinear dynamic response problems.
【作者单位】: 中南大学土木工程学院;
【基金】:国家自然科学基金(50908230)
【分类号】:O241.4
本文编号:2295923
[Abstract]:For the nonlinear dynamic equation of state (VX H v f (VT), combining the precise integration method and the Romberg numerical integration, the vk / j / m (J _ (k / j / m) (J _ (k / j / m), which is to be solved in the process of calculation, is studied. , m), uses the current time vk, to predict by the second order Runge-Kutta method and proposes an efficient precise integration single-step method to avoid the inversion of the state matrix. This method has the advantages of uniform calculation format and easy programming. By selecting m value, different calculation accuracy can be carried out. Compared with two single-step methods, one-step precalibration method and predictor-correction-symplectic time subdomain method, the numerical results show that the proposed method has high accuracy, high efficiency and good stability. It has great advantages in solving multi-degree-of-freedom and strongly nonlinear dynamic response problems.
【作者单位】: 中南大学土木工程学院;
【基金】:国家自然科学基金(50908230)
【分类号】:O241.4
【相似文献】
相关期刊论文 前10条
1 杨逢建,张爱国;一类多参数多导混合单步法[J];仲恺农业技术学院学报;1998年03期
2 宋晚秋;;非线性稳定的块隐式单步法<英文>[J];应用数学;1991年02期
3 杨逢建;多导混合单步法几种阶的关系[J];仲恺农业技术学院学报;1998年01期
4 翟秀娜;强稳定的最优单步法公式[J];华北航天工业学院学报;2003年01期
5 杨逢建,张爱国;一类多参数多导混合单步法[J];湘潭机电高等专科学校学报;1996年01期
6 刘钢;并行计算的块隐式混合单步法[J];武汉工业大学学报;1993年01期
7 刘永莉;一个至少三阶收敛的单步法公式[J];甘肃高师学报;2005年02期
8 孙耿;一类多级隐式Hybrid单步法[J];高等学校计算数学学报;1984年02期
9 向开理,张建国;一类求解Stiff方程组显式单步法的改进[J];高等学校计算数学学报;1994年04期
10 向开理;一类求解刚性常微分方程组的线性隐式Hybrid单步法[J];西南石油学院学报;1992年S1期
,本文编号:2295923
本文链接:https://www.wllwen.com/kejilunwen/yysx/2295923.html