一类梁方程正解的存在性和对参数的依赖性
发布时间:2018-11-21 18:27
【摘要】:应用锥不动点定理并结合Banach空间中的半序结构,研究了一类梁方程的可解性问题.不仅得到了梁方程正解的存在性结果,并且讨论了梁方程正解对参数的依赖性.注意到梁方程中含有正参数λ和L~p-可积函数,获得的结果是新的,并从本质上推广了已有文献的结果.
[Abstract]:The solvability of a class of beam equations is studied by using the cone fixed point theorem and the semi-ordered structure in Banach spaces. Not only the existence of positive solution of beam equation is obtained, but also the dependence of positive solution of beam equation on parameters is discussed. The positive parameter 位 and LP- integrable function are found in the beam equation. The results obtained are new and generalize the results obtained in the literature.
【作者单位】: 北京信息科技大学理学院;
【基金】:国家自然科学基金(9011623903) 北京市教委科技计划项目(71E1710957)
【分类号】:O175.8
,
本文编号:2347895
[Abstract]:The solvability of a class of beam equations is studied by using the cone fixed point theorem and the semi-ordered structure in Banach spaces. Not only the existence of positive solution of beam equation is obtained, but also the dependence of positive solution of beam equation on parameters is discussed. The positive parameter 位 and LP- integrable function are found in the beam equation. The results obtained are new and generalize the results obtained in the literature.
【作者单位】: 北京信息科技大学理学院;
【基金】:国家自然科学基金(9011623903) 北京市教委科技计划项目(71E1710957)
【分类号】:O175.8
,
本文编号:2347895
本文链接:https://www.wllwen.com/kejilunwen/yysx/2347895.html