一类半群的正则性和格林关系
发布时间:2018-11-22 14:18
【摘要】:设E是X上的一个等价关系,P_E(X)是由等价关系E确定的保等价关系的部分变换半群.利用格林关系和正则元的定义,研究了半群P_E(X)的一个子半群P_2(X)={f∈P_E(X)∶|imf|≤2}上的格林关系和正则性,刻画了半群P2(X)上的两元素间的格林关系,给出了这类半群中元素为正则元的充要条件.
[Abstract]:Let E be an equivalent relation on X, and PE (X) be a partial transformation semigroup of preserving equivalence relations determined by equivalence relation E. By using Green's relation and the definition of regular element, we study the Green's relation and regularity on a subsemigroup P _ s _ 2 (X) = {f 鈭,
本文编号:2349617
[Abstract]:Let E be an equivalent relation on X, and PE (X) be a partial transformation semigroup of preserving equivalence relations determined by equivalence relation E. By using Green's relation and the definition of regular element, we study the Green's relation and regularity on a subsemigroup P _ s _ 2 (X) = {f 鈭,
本文编号:2349617
本文链接:https://www.wllwen.com/kejilunwen/yysx/2349617.html