非线性偏微分方程的非局域对称、相互作用解与守恒律
[Abstract]:Nonlinear partial differential equation (NPDE) is a long history subject, and it is a very important mathematical model appearing in various fields of science. In this paper, three problems of nonlinear partial differential equations are studied by means of computer algebra. They are nonlocal symmetry, interaction solutions and conservation laws. The content of this paper is divided into the following five parts: the first chapter briefly introduces the solutions of nonlinear partial differential equations and some methods of finding conservation laws, and expounds the main research contents of this paper. The second chapter, elaborated the basic theory knowledge which the thesis needs. In chapter 3, the background knowledge of (21) -dimensional Kaup-Kupershmidt equations is introduced, and then the nonlocal symmetry and interaction solutions of the equations are given. In chapter 4, the research background of the Kadomtsev-Petviashvili potential equation is given, and then many conservation laws of the equation are obtained by using the Noether method. The fifth chapter, the full text proposed the summary and makes the prospect.
【学位授予单位】:宁波大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175.29
【参考文献】
相关期刊论文 前10条
1 任博;俞军;刘希忠;;Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation[J];Communications in Theoretical Physics;2016年03期
2 刘希忠;俞军;任博;杨建荣;;Bcklund transformations for the Burgers equation via localization of residual symmetries[J];Chinese Physics B;2014年11期
3 刘希忠;俞军;任博;杨建荣;;New interaction solutions of the Kadomtsev Petviashvili equation[J];Chinese Physics B;2014年10期
4 郑滨;;(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics[J];Communications in Theoretical Physics;2012年11期
5 胡晓瑞;陈勇;黄菲;;Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation[J];Chinese Physics B;2010年08期
6 ;Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation[J];Communications in Theoretical Physics;2009年11期
7 傅海明;戴正德;;Kaup-Kupershmidt方程的精确解[J];吉首大学学报(自然科学版);2009年03期
8 曾昕,张鸿庆;(2+1)维Boussinesq方程的Backlund变换与精确解[J];物理学报;2005年04期
9 张解放,徐昌智,何宝钢;变量分离法与变系数非线性薛定谔方程的求解探索[J];物理学报;2004年11期
10 ;Variable Separation Approach to Solve Nonlinear Systems[J];Communications in Theoretical Physics;2004年10期
,本文编号:2370247
本文链接:https://www.wllwen.com/kejilunwen/yysx/2370247.html