当前位置:主页 > 科技论文 > 数学论文 >

非线性偏微分方程的非局域对称、相互作用解与守恒律

发布时间:2018-12-10 07:58
【摘要】:非线性偏微分方程是一门历史久远的学科,它是出现在各个科学领域中非常重要的数学模型.本文利用计算机代数为辅助工具,对非线性偏微分方程的三个问题进行了研究,它们分别是非局域对称、相互作用解以及守恒律.本文内容主要分为以下五部分:第一章,对非线性偏微分方程的解和守恒律的若干求法进行了简要的介绍,并阐明了本文的主要研究内容.第二章,详细阐述了论文所需要的基本理论知识.第三章,首先介绍了(2+1)-维Kaup-Kupershmidt方程组的背景知识,然后给出了关于该方程组的非局域对称和相互作用解.第四章,首先给出了Kadomtsev-Petviashvili势方程的相关研究背景,再运用Noether法得到了许多该方程的守恒律.第五章,对全文提出总结并作出展望.
[Abstract]:Nonlinear partial differential equation (NPDE) is a long history subject, and it is a very important mathematical model appearing in various fields of science. In this paper, three problems of nonlinear partial differential equations are studied by means of computer algebra. They are nonlocal symmetry, interaction solutions and conservation laws. The content of this paper is divided into the following five parts: the first chapter briefly introduces the solutions of nonlinear partial differential equations and some methods of finding conservation laws, and expounds the main research contents of this paper. The second chapter, elaborated the basic theory knowledge which the thesis needs. In chapter 3, the background knowledge of (21) -dimensional Kaup-Kupershmidt equations is introduced, and then the nonlocal symmetry and interaction solutions of the equations are given. In chapter 4, the research background of the Kadomtsev-Petviashvili potential equation is given, and then many conservation laws of the equation are obtained by using the Noether method. The fifth chapter, the full text proposed the summary and makes the prospect.
【学位授予单位】:宁波大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O175.29

【参考文献】

相关期刊论文 前10条

1 任博;俞军;刘希忠;;Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation[J];Communications in Theoretical Physics;2016年03期

2 刘希忠;俞军;任博;杨建荣;;Bcklund transformations for the Burgers equation via localization of residual symmetries[J];Chinese Physics B;2014年11期

3 刘希忠;俞军;任博;杨建荣;;New interaction solutions of the Kadomtsev Petviashvili equation[J];Chinese Physics B;2014年10期

4 郑滨;;(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics[J];Communications in Theoretical Physics;2012年11期

5 胡晓瑞;陈勇;黄菲;;Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation[J];Chinese Physics B;2010年08期

6 ;Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation[J];Communications in Theoretical Physics;2009年11期

7 傅海明;戴正德;;Kaup-Kupershmidt方程的精确解[J];吉首大学学报(自然科学版);2009年03期

8 曾昕,张鸿庆;(2+1)维Boussinesq方程的Backlund变换与精确解[J];物理学报;2005年04期

9 张解放,徐昌智,何宝钢;变量分离法与变系数非线性薛定谔方程的求解探索[J];物理学报;2004年11期

10 ;Variable Separation Approach to Solve Nonlinear Systems[J];Communications in Theoretical Physics;2004年10期



本文编号:2370247

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2370247.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cf35d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com